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Abstract

In this article, we discuss the structure at infinity of locally symmetric space Γ \G/K. Where
G is a semisimple Lie group that satisfies Kazhdan’s property (T), K is the maximal compact
subgroup of G and Γ is a torsion-free discrete subgroup of G. Kazhdan’s property (T) and
semisimpleness of Lie group G play essential roles in obtaining spectrum information of Γ \G/K,
and furthermore, in concluding number of ends of Γ \G/K.

1 Introduction

This paper studies the structure at infinity of Γ \G/K, where G is a semisimple Lie group satisfying
Kazhdan’s property(T), K is maximal compact subgroup of G, Γ is a discrete, torsion-free subgroup
of G. Kevin Corlette announced in 1995 Fall Eastern Sectional Meeting at Boston that locally
symmetric space Γ \G/K satisftying above conditions has finite many ends, at most one of which is
of infinite volume. Our main result is as follows:

Theorem 1.1. Let G be a semisimple Lie group that satisfies Kazhdan’s property (T), K be the
maximal compact subgroup of G such that G/K is a symmetric space without any compact factor
and without any factor isometric to a real or complex hyperbolic space, Γ be a discrete, torsion-free
subgroup of G. Then Γ \G/K has at most one end with infinite volume, and the compliment of the
end with infinite volume has finite volume.

In this article, by an end we mean a connected component of the complement of some compact
set which is not relatively compact.

This work is inspired by the paper of G. Carron and Emmanuel Pedon [4]. They point out
that the Kazhdan’s property(T) of G and the assumption that Γ \G/K has infinite volume implies
that the first eigenvalue of Laplacian on Γ \G/K is bounded away from 0. On the other hand, the
fact that the space of L2-harmonic 1-forms of Γ \G/K is trivial is a consequence of Matsushima
formula, i.e. dimH1

L2(Γ \G/K) = 0, see [15]. The number of infinite volume ends is bounded above
by dimH1

L2(Γ \G/K) + 1 according to [11] .
The result of this article is true for the space G/K of any rank. For rank one case, since Sp(n, 1)

and F4(−20) has property (T), G/K is one of the hyperbolic spaces Hn
H or Hn

O, the quotient Γ \G/K
is called exotic hyperbolic manifold. The domain of discontinuity under action Γ is well defined
for exotic hyperbolic spaces, an analogue of Burns’ Theorem in complex geometry can be proved.
Recall Burns’ Theorem as follows:

Theorem 1.2. Let Γ be a torsion-free group of automorphisms of the unit ball B in Cn with n ≥ 3
and let M = Γ \ B. Assume that the limit set Λ is a proper subset of ∂B and that the quotient
Γ \ (∂B \ Λ) has a compact component A. Then M has only finitely many ends; all of which except
for the end corresponding to A, are cusps. In fact, M is diffeomorphic to a compact manifold with
boundary.
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For quaternion and Cayley number hyperbolic manifolds, the result is presented:

Theorem 1.3. Let Hn
K be a hyperbolic space, where K = H, n ≥ 2 or O, n = 2, Γ be a discrete,

torsion-free group of isometries of Hn
K. Assume that the domain of discontinuity is not empty, and

the quotient of discontinuity by the group action of Γ has a compact connected component. Then
Γ \Hn

K has at most one end of infinite volume and finitely many ends in total.

Remark 1.4. Kevin Corlette claimed finiteness of the number of ends in the higher rank case, but
the author is not able to prove it while writing this article.

Our article is organized as follows. Basic homogeneous model for hyperbolic manifolds are given
in section 2, together with some claims of notations which will be used throughout this paper.
In section 3, we give basic facts about Kazhdan’s property (T) (according to [1]). In section 4,
results from P. Pansu [15] are recalled which implies that the first L2 cohomology of Γ \G/K with
coefficients in the unitary representation ρ vanishes. In particular, H1(G, ρ) = 0. In section 5, we
collect necessary ingredients of harmonic function theory on smooth manifolds to complete the proof
of Theorem 1.1.

Acknowledgements This paper is part of thesis under supervision of Dr. Ramachandran, The
author would like to thank Dr. Ramachandran for all the help during the completion of this
paper. The author also would like to thank G. Carron, P. Pansu and Luen Fai Tam for the helpful
discussions.

2 Notations and Background

2.1 Homogeneous Models for Hyperbolic Manifolds

For n ≥ 2 and K = R,C,H or for n = 2, K = O. Let Hn
K be the Riemannian hyperbolic space of

dimension n over K. ThenHn
K can be expressed as G/K, non-compact type space of rank one, where

G is a connected non-compact semisimple real Lie group with finite center and K is a maximal
compact subgroup of G which consists of elements fixed by a Cartan involution θ. They are listed
as follows:

Table 1

K G K

R SO(n, 1) SO(n)

C SU(n, 1) SU(n)× U(1)

H Sp(n, 1) Sp(n)× Sp(1)

O F4(−20) Spin(9)

Let Γ be any torsion-free discrete subgroup of G, so that the quotient Γ \G/K is a hyperbolic
manifold, i.e. a complete Riemannian locally symmetric space with strictly negative curvature.
Throughout this paper, we focus on Γ \Hn

H and Γ \H2
O.

3 Kazhdan’s Property (T)

In this section, we collect some basic facts about Kazhdan’s Property (T).
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3.1 Unitary representation

Kazhdan’s Property (T) for a topological group is defined in terms of unitary representations in
Hilbert spaces. In this paper, Hilbert spaces are always complex. The inner product of two vectors
ξ, η in Hilbert space H is 〈ξ, η〉.

The unitary group U(H) of H is the group of all invertible bounded linear operators U :H → H
which are unitary, namely such that, for all ξ, η ∈ H,

〈Uξ, Uη〉 = 〈ξ, η〉,

or equivalently such that U∗U = UU∗ = I, where U∗ denotes the adjoint of U and I the identity
operator on H.

Let G be a topological group. A unitary representation of G in H is a group homomorphism
ρ : G→ U(H) which is strongly continuous, that is , such that the mapping

G→ H, g 7→ ρ(g)ξ

is continuous for every ξ ∈ H. We often write (ρ,H) for such a representation.

Definition 3.1. Let (ρ,H) be a unitary representation of a topological groupG.

1. For a subset Q of G and real number ε > 0, a vector ξ ∈ H is (Q, ε)-invariant if

sup
x∈Q
||ρ(x)ξ − ξ|| < ε||ξ||

2. The representation (ρ,H) almost has invariant vectors if it has (Q, ε)-invariant vectors for
every compact subset Q of G and every ε > 0.

3. The representation (ρ,H) has non-zero invariant vectors if there exists ξ 6= 0 in H such that
ρ(g)ξ = ξ for all g ∈ G

Definition 3.2. Let G be a topological group. A subset Q of G is a Kazhdan set if there exists ε > 0
with the following property: every unitary representation (ρ,H) of G which has a (Q, ε)-invariant
vector also has a non-zero invariant vector.

In this case, ε > 0 is called Kazhdan constant for G and Q, and (Q, ε) is called a Kazhdan pair
for G.

The group G has Kazhdan’s Property (T), or is a Kazhdan group, if G has a compact Kazhdan
set.

In other words, G has Kazhdan’s Property (T) if there exists a compact subset Q of G and ε > 0
such that, whenever a unitary representation ρ of G has a (Q, ε)-invariant vector, then ρ, then ρ
has a non-zero invariant vector.

Definition 3.1 of Kazhdan’s Property (T) is standard and mostly used in all kinds of context.
For the purpose of this article, we use an equivalent definition of Kazhdan’s Property (T) to finish
the proof of main theorem.

Definition 3.3. Every unitary representation of G that has an (Q, ε)-invariant unit vector for any
ε > 0 and any compact subset Q ⊂ G, has no nonzero invariant vector.
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Before we actually prove that Kazhdan’s property (T) implies positiveness of the first eigenvalue
of Laplacian, let us recall some results about Haar measure. More detailed material can be found in
[7].

Let G be a Lie group, and let g be its Lie algebra. For g ∈ G, let Lg : G→ G and Rg : G→ G be
the left and right translations Lg(x) = gx and Rg(x) = xg. A smooth form ω on G is left invariant
if L∗gω = ω for all g ∈ G, right invariant if R∗gω = ω for all g ∈ G. Following theorem is proved in
[7].

Theorem 3.4. If G is a Lie group of dimension m, then G admits a nowhere-vanishing left-invariant
smooth m form ω. Then G can be oriented so that ω is positive, and ω defines a nonzero Borel
measure dνG on G that is left invariant in the sense that dνG(L(g)E) = dνG(E) for all g ∈ G and
every Borel set E in G.

A nonzero Borel measure on G invariant under left translation is called a left Haar measure on
G and its existence is guaranteed by Theorem 3.4.

It is known that a group G is said to be unimodular if and only if left Haar measure is
also right invariant. According to Corollary 8.31 in [7], semisimple Lie groups are always unimodular.
Throughout this article, the Lie group G is semisimple and then the left Haar measure dνG on G is
also right invariant.

Theorem 3.5. Suppose that G satisfies property (T) and K is a maximal compact subgroup of G
which consists of elements fixed by Cartan involution, Γ is a torsion-free, discrete subgroup of G
such that Γ \G/K is a noncompact locally symmetric manifold of infinite volume. Then the first
eigenvalue λ0(Γ \G/K) is bounded away from 0.

Proof of the theorem depends on a few lemmas.

Lemma 3.6. Suppose G has Kazhdan’s Property (T) and K is a maximal compact subgroup of
G, Γ is a torsion free, discrete subgroup of G such that Γ \G/K is noncompact locally symmetric
manifold of infinite volume. Then the unitary representation ρ : G→ U(L2(Γ \G)), defined as

ρ(g)f(x̄) := f(x̄g)

for all g ∈ G, has no invariant vectors.

Proof. Assume the contrary: ρ has an invariant vector. Let f be the invariant vector in L2(Γ \G)
under representation ρ : G→ U(L2(Γ \G)), i.e.

ρ(g)f = f , for all g ∈ G

or

f(x̄g) = f(x̄), for all g ∈ G

This implies that f is a constant function on Γ \G. Then f /∈ L2 due to the fact that Γ \G has
infinite volume, contradicting to f ∈ L2(Γ \G)

Throughout this article, x̄ will always refer to the orbit of Γ acting on G.
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Lemma 3.7. Suppose u(x̄) ∈ L2(Γ \G) and ū(x) is the lift of u(x̄) that is defined on G:

ū(x) := u(x̄).

And D is a fundamental region in G with respect to Γ. Then for all g ∈ G, the function ū(xg) is
also L2-integrable on D, i.e. ū(xg) ∈ L2(D).

Proof. By definition of ū(x), we have that

ū(xg) = u(x̄g).

Since Γ · (xg) = (Γx) · g, or equivalently, x̄g = x̄g. So

ū(xg) = u(x̄g) = u(x̄g).

Notice that u(x̄g) is in L2(Γ \G) since it is the unitary representation of G on L2(Γ \G), and that
u(x̄g) ∈ L2(Γ \G) is equivalent to ū(xg) ∈ L2(D) and |dū| ∈ L2(D). We have completed the proof
of lemma.

Lemma 3.8. Suppose both h(x̄) and dh(x̄) are L2-integrable over Γ \G, and g is arbitrary element
of G, then there exists a constant C(g) that depends only on g, such that∫

Γ\G
|h(x̄g)− h(x̄)|2dνΓ\G ≤ C(g)||dh||2L2(Γ\G) (1)

Proof. Denote u(x) as the lift of h(x̄) from Γ \G to G, i.e,

u(x) := h(x̄), (2)

where x ∈ G and x̄ = Γx that is the orbit of x under action of Γ.

Let D ⊂ G be a fundamental region of G with respect to Γ. Since h(x̄), dh(x̄) ∈ L2(Γ \ G),
we have u(x), du(x) are also L2-integrable over any connected fundamental region D ⊂ G. Further
more, we have following equality:

||dh||L2(Γ\G) = ||du||L2(D), (3)

and ∫
Γ\G
|h(x̄g)− h(x̄)|2dνΓ\G =

∫
D
|u(xg)− u(x)|2dνG. (4)

Let g ∈ G taken arbitrarily, join g and e by a length-minimizing geodesic g(t) of G such that
g(1) = g, and g(0) = e. Then g(t) has constant speed c,

| d
dt
g(t)| =

√
〈 d
dt
g(t),

d

dt
g(t)〉 = c. (5)

Since the Riemannian metric 〈·, ·〉 is left-invariant under left translation Lx defined by any element
x ∈ G, we have that

〈 d
dt
xg(t),

d

dt
xg(t)〉 = 〈 d

dt
g(t),

d

dt
g(t)〉 = c2. (6)

By taking derivative of u(xg(t)) with respect to t and chain rule, the following inequality is obtained.

| d
dt
u(xg(t))| ≤ |du(xg(t))|| d

dt
xg(t)|. (7)
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Due to | ddtxg(t)| = c, we have

| d
dt
u(xg(t))| ≤ c|du(xg(t))|. (8)

On the other hand, we have the following estimate:

|u(xg)− u(x)|2 = |
∫ 1

0

d

dt
u(xg(t))dt|2

≤ (

∫ 1

0
| d
dt
u(xg(t))|dt)2

≤
∫ 1

0
| d
dt
u(xg(t))|2dt

≤
∫ 1

0
c2|du(xg(t))|2dt.

(9)

Integrating |u(xg)− u(x)|2 over fundamental domain D with respect to Haar measure dνG of G, we
have ∫

D
|u(xg)− u(x)|2dνG =

∫
G
|u(xg)− u(x)|2χD(x)dνG

≤
∫
G

(

∫ 1

0
|du(xg(t))|2| d

dt
g(t)|2dt)χD(x)dνG

=

∫
G

∫ 1

0
|du(xg(t))|2| d

dt
g(t)|2χD(x)dtdνG

=

∫ 1

0

∫
G
|du(xg(t))|2| d

dt
(g(t))|2χD(x)dνGdt

=

∫ 1

0
| d
dt
g(t)|2(

∫
G
|du(xg(t))|2χD(x)dνG)dt

(10)

Since dνG is left and right invariant Haar measure on G, the inside integral above has the following
property, ∫

G
|du(xg(t))|2χD(x)dνG =

∫
G
|du(x)|2χD(xg−1(t))dνG

=

∫
G
|du(x)|2χDg−1(t)(x)dνG

=

∫
Dg−1(t)

|du(x)|2dνG

= ||du||2L2(Dg−1(t))

= ||du||2L2(D).

(11)

Combining with (3.10), we have that∫
D
|u(xg)− u(x)|2dνG ≤ (

∫ 1

0
| d
dt
g(t)|2dt)||du||2L2(D), (12)

or equivalently ∫
Γ\G
|h(x̄g)− h(x̄)|2dνΓ\G ≤ (

∫ 1

0
| d
dt
g(t)|2dt)||dh||2L2(Γ\G). (13)
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Since g(t) is geodesic, energy of the curve g(t) and length l(g(t)) of g(t) have equality relation as
follows: ∫ 1

0
| d
dt
g(t)|2dt =

1

2
l2(g(t)). (14)

And l(g(t)) only depends on g ∈ G, let C(g) = 1
2 l

2(g(t)), we have proved that∫
Γ\G
|h(x̄g)− h(x̄)|2dνΓ\G ≤ C(g)||dh||2L2(Γ\G). (15)

Now we prove Theorem 3.5:

Proof. We need to prove that λ0(Γ \G/K) is bounded away from 0, or equivalently there exists
constant c > 0, such that

λ0 = inf
f∈C∞c

{

∫
Γ\G/K |df |

2dvol∫
Γ\G/K |f |2dvol

} ≥ c. (16)

Normalising L2-norm of f such that ||f ||L2 = 1, (3.16) is equivalent to

λ0 = inf
f∈C∞c

{
∫

Γ\G/K
|df |2dvol} ≥ c. (17)

We prove this by assuming the contrary: λ0(Γ \G/K) = 0, that is to say for any positive number
c > 0, there exists f ∈ L2(Γ \G/K), such that∫

Γ\G/K
|df |2dvol < c. (18)

Now choose arbitrary compact subset Q ⊂ G, and arbitrary positive number ε > 0. Notice that from
the proof of Lemma 3.8, l2(g(t)) is nothing but the square of arc length of the geodesic connecting
g and e. Since arc length l(g(t)) only depends on element g continuously, C(g) also depends on g
continuously. So ranging over the compact set Q, there exists a maximum value of C(g) which can
be defined as

CM = max
g∈Q
{C(g)}. (19)

And then for all g ∈ Q, result of Lemma 3.8 can be improved to∫
Γ\G
|h(x̄g)− h(x̄)|2dνΓ\G ≤ CM ||dh||2L2(Γ\G) (20)

By the assumption that λ0(Γ \G/K) = 0, there exists f ∈ L2(Γ \G/K) that satisfies∫
Γ\G/K

|df |2dvol < ε

CM
, (21)

where CM is the constant coming from (3.19) that only depends on Q.
Lift f onto an L2 function on Γ \G, denoted as f̃ , and it holds that∫

Γ\G
|df̃ |2dνΓ\G <

ε

CM
. (22)

7



Applying Lemma 3.8, we obtain that∫
Γ\G
|f̃(xg)− f̃(x)|2dνΓ\G ≤ CM

∫
Γ\G
|df̃ |2dνΓ\G < ε, (23)

or
||ρ(g)f̃ − f̃ ||L2 < ε, (24)

for all g ∈ Q.

So f̃ is a (Q, ε)-invariant vector of the unitary representation

ρ : G→ U(L2(Γ \G)).

Since the pair (Q, ε) is chosen arbitrarily, we conclude that if λ0(Γ \G/K) = 0, then ρ is a unitary
representation that has (Q, ε)-invariant vectors for all compact set Q ⊂ G and all ε > 0. But the
Kazhdan’s property (T) of G implies that this unitary representation ρ has an invariant vector,
contradicting to Lemma 3.6.

4 Geometric superrigidity and Matsushima Formula

In this section we recall some results proved by N. Mok, Y.T. Siu and S.K. Yeung [16] and P. Pansu
[15]. It is proved in [15] and [16] that there exists on a irreducible symmetric space that is neither
real nor complex a 4-tensor Q satisfying certain conditions. This 4-tensor is called a tensor of
curvature type according to [16]. Bochner type formula for Q is obtained in [16] via integration by
parts. P. Pansu [15] generalizes the arguments to obtain the Matsushima formula for Hilbert space
valued differential forms on Γ \G/K.

According to [14] and [16], let M be a Riemannian manifold with metric (gij). We say that a
real 4-tensor Q on M is a tensor of curvature type if

Q(X,Y, Z,W ) = −Q(Y,X,Z,W ) = Q(Z,W,X, Y )

Q(X,Y, Z,W ) +Q(Y,Z,X,W ) +Q(Z,X, Y,W ) = 0

The actions of Q on 1-forms and 2-tensors are defined as

Q(α) = gkmQ
ijklαm

and
Q̊τ = gkmglnQ

ikjlτmn

where Qijkl = gipgjqgkrglsQpqrs, (gij) is the inverse matrix of (gij).
The following proposition is stated in [15] and [16], and its proof can be found in [16].

Proposition 4.1. Let X be a irreducible symmetric space that is neither real nor complex hyperbolic.
There exists on X a tensor of curvature type Q satisfying conditions:
1) Q is parallel.
2) 〈Q,R〉 = 0, where 〈·, ·〉 means the pointwise inner product.
3) The quadratic form 〈Q̊τ, τ〉 is positive definite on traceless symmetric 2-tensors.
4) The inner product 〈Q,T 〉 si nonpositive for any tensor T of curvature type with nonpositive
Riemannian sectional curvature in the case of rank ≥ 2 and with nonpositive complexified sectional
curvature in the rank 1 case.
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Following proposition can be found in [14]

Proposition 4.2. Let M be a compact Riemannian manifold, R be the curvature tensor, E be a
vector fibre on M with a metric and an orthogonal connection D. Let α be a 1-form on M valued in
E and Q be a tensor of curvature type that is parallel on M . We have that (by integration by parts)∫

M
〈Q̊Dα,Dα〉 =

1

2

∫
M

(〈Q,α∗RE〉+ 〈Q(α), R(α)〉). (25)

Since 〈Q(α), R(α)〉 is proportional to 〈Q,R〉|α|2 if M is locally symmetric and locally irreducible,
〈Q(α), R(α)〉 = 0 from condition (2) in proposition 4.1. Condition (4) implies that 〈Q,α∗RE〉 ≤ 0
while condition (3) implies that 〈Q̊Dα,Dα〉 ≥ 0. Thus we have that∫

M
〈Q̊Dα,Dα〉 = 0 (26)

In [15], Matsushima Formula was generalized to Hilbert space valued differential forms. Let Γ
be a discrete group of isometries on X, where X is a Riemannian manifold. And ρ : Γ→ U(H) is
a unitary representation on a Hilbert space. Then ρ gives rise to a flat bundle over Γ \X if we
consider diagonal action of Γ on H×X defined as

(γ, γ)(h, x) = (ρ(γ)h, γx) (27)

Then (H×X)/Γ is a flat bundle over Γ \X and a Γ \X valued differential form is a Γ-invariant
H-valued differential form on X. This kind of forms a called forms twisted by unitary representation
ρ. Furthermore, |α|2 is a function on X that is invariant under Γ. we define the L2 norm of α as

||α||2L2 =

∫
Γ\X
|α|2 (28)

Since the integration by parts procedure to derive (4.2) can be justified by cut-off argument [4], we
obtain same result for Γ \X: ∫

Γ\X
〈Q̊Dα,Dα〉 = 0 (29)

The following lemma is proved by P. Pansu in [15].

Lemma 4.3. Let X be an irreducible symmetric space, that is not real or complex, Γ a discrete
group of isometry of X, ρ a unitary representation of Γ. Let α be a 1-form on Γ \X twisted by
ρ, Dα its covariant derivative, we suppose α, dα, δα are in L2(Γ \X). So there is a constant C
independent of ρ such that

||α||2 + ||Dα||2 ≤ C(||δα||2 + ||dα||2) (30)

Proof. Let X be a symmetric space of rank >1. Q is a curvature tensor field parallel on X, satisfying
< Q,R >= 0. Quadratic form < Q(ξ), R(ξ) > on cotangent space is K−invariant, so proportional
to a metric. If < Q,R >= 0, it is identically 0, so < Q(ξ), R(ξ) >= 0 for all ξ ∈ T ∗X.
According to Proposition 4.1, we can choose a parallel tensor field of curvature type Q such that
< Q,R >= 0. There exist constants C ′ and C ′′, such that for all bilinear form T on TX,

< T, T >≤ C ′(|A(T )|2 + |trT |2) + C ′′〈Q̊T, T 〉 (31)
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or A(T )(u, v) = T (u, v)− T (v, u).
Let α be a 1-form on Γ \X twisted by ρ, as dα = A(Dα) and δ = tr(Dα), there comes

|Dα|2 ≤ C ′(|dα|2 + |δα|2) + C ′′〈Q̊Dα,Dα〉 (32)

where α and Dα are L2, the Matsushima formula is written as∫
Γ\X
〈Q̊Dα,Dα〉 = 0. (33)

whence integrate (4.8), we have

||Dα||2 ≤ C ′(||dα||2 + ||δα||2)

Since α, Dα ∈ L2, the Bochner formula gives:

||Dα||2 − ||δα||2 − ||dα||2 = L||α||2

where L is a constant > 0. Then there exists constant C such that ||α||2L1,2 := ||α||2 + ||Dα||2 ≤
C(||dα||2 + ||δα||2). i.e.:

||α||2 + ||Dα||2 ≤ C ′(||dα||2 + ||δα||2) + ||α||2 (34)

= C ′(||dα||2 + ||δα||2) +
||Dα||2 − ||δα||2 − ||dα||2

L
(35)

= (C ′ − 1

L
)(||dα||2 + ||δα||2) +

||Dα||2

L
(36)

≤ (C ′ − 1

L
)(||dα||2 + ||δα||2) + (

1

L
)C ′(||dα||2) + ||δα||2 (37)

where C = C ′ − 1
L + C′

L .

In particular, we have the following corollary immediately.

Corollary 4.4. Let α be an L2 harmonic 1-form on Γ \G/K, then α = 0.

Proposition 4.5. The codifferential δ is a 1-1 map on the space of closed L2 1-forms

Proof. If α is closed, then dα = 0. Assume that δα = 0, form inequality of Lemma 4.4, there must
be that α = 0

Corollary 4.6. The first L2-cohomology of Γ \X twisted by ρ vanishes,

L2H1(Γ \X, ρ) = 0 (38)

Proof. We need to show that for any L2 1-form α satisfying dα = 0, there exists an L2 0-form β
such that dβ = α.
Consider the following L2 chain complex

L2Ω0 → L2Ω1 → L2Ω2 → ... (39)

where L2Ωp is the space of L2 differential p-forms.
Take β = (δ−1)∗α, where δ is the codifferential of the L2 chain complex in (3.5) and (δ−1)∗ is the
adjoint of δ−1. δ−1 is well defined since δ is 1-1 on the space of closed L2 1-forms. We will show
that β is the L2 0-form such that dα = β.
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There are two norms for α ∈ L2Ω1, one is ||α||2L2 defined as above, the other is ||α||2L1,2 defined to be
||α||2L2 + ||Dα||2L2 , suppose that Dα is L2. By the definition of adjoint operator, we have following

〈δβ′, β〉 = 〈δβ′, (δ−1)∗α〉 = 〈δ−1δβ′, α〉 = 〈β′, α〉 (40)

On the other hand, 〈δβ′, β〉 = 〈β′, dβ〉.
Thus, dβ = α, and β ∈ L2Ω0, which implies L2H1(Γ \X, ρ) = 0

5 Proof of main theorem

5.1 Parabolic Ends of manifolds

Parabolicity of manifolds and their ends are extensively studied function theory on manifolds. In
this section, we summarise some general results on parabolicity of non-compact manifolds and their
ends and prove that parabolicity implies finiteness of volume of end. More detailed materials on
these topics can be found in [8] and [11]

Definition 5.1. A complete manifold is called parabolic if it does not admit a positive Green’s
function. otherwise, it is called nonparabolic.

Definition 5.2. An end E is non-parabolic if and only if it admits a positive harmonic function f
with

f = 1 on ∂E
lim infy→∞ f(y) < 1

Definition 5.3. An end E with respect to a compact subset K ⊂M is an unbounded connected
component of M \K. The number of ends with respect to K, denoted as NK(M) is the number of
unbounded connected components of M \K.

Obviously if K1 ⊂ K2, then NK1(M) ≤ NK2(M). By taking exhaustion {Ki} of M , if the
sequence NKi(M) is bounded, we say the number of ends of M is

N(M) = max
i→∞

NKi(M) (41)

Note that N(M) is independent of exhaustion {Ki}. In addition, we denote the boundary of E as

∂E = ∂K1 ∩ Ē (42)

Definition 5.4. The first eigenvalues of manifold M and its end E are defined to be

λ0(M) = inf
f∈C∞c (M)

{
∫
M |∇f |

2dvol∫
M |f |2dvol

}

and

λ0(E) = inf
f∈C∞c (E)

{
∫
E |∇f |

2dvol∫
E |f |2dvol

}.

The following result is immediate from definition.

Proposition 5.5. If λ0(M) > 0, then for all ends of M , λ0(E) > 0.
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Proof. Choose arbitrary f ∈ C∞c (E), extending f to M by letting , we have that∫
M |∇f |

2dvol∫
M |f |2

dvol =

∫
E |∇f |

2dvol∫
E |f |2dvol

≥ λ0(M)

. Since f lies in Cc(M) automatically, and f is chosen arbitrarily, it is obvious that λ0(M) is another
lower bound of

{
∫
E |∇f |

2dvol∫
E |f |2dvol

}

. So λ0(M) ≤ λ0(E).

Consider the boundary value problem on an end of complete Riemannian manifold M . Let E
be an end of M , B(R) be a geodesic ball with radius R centering at some point of M . Denote
E(R) = B(R) ∩ E. Suppose fi is the solution to the boundary value problem

∆fi = 0 on E(Ri)

with
fi = 1 on ∂E

and
fi = 0 on E ∩ ∂B(Ri).

The following lemmas are proved in [8].

Lemma 5.6. (Lemma 17.1 of [8]) Let Ω ⊂M be a connected open subset of a complete manifold
M . Suppose {fi} is a sequence of positive harmonic functions defined on Ω. If there exists a point
p ∈ Ω such that the sequence fi(p) is bounded, then after passing through a subsequence fi converges
uniformly on compact subsets of Ω to a harmonic function f .

Lemma 5.7. (Lemma 20.6 of [8]) An end E with respect to the compact set Bp(R0) is non-parabolic
if and only if the sequence of positive harmonic functions {fi}, defined on Ep(Ri) = Bp(Ri) ∩ E for
R0 < R1 < ... <→∞. satisfying

fi = 1 on ∂E

and
fi = 0 on ∂Bp(Ri) ∩ E

converges uniformly on compact subsets of E ∪ ∂E to a non-constant function f .

The following proposition is a special case of Lemma 20.10 of [8].

Proposition 5.8. Let E be a parabolic end of a complete Riemannian manifold. Suppose the
spectrum λ0(E) > 0. Then E has finite volume.

Proof. According to Lemma 17.1 and Lemma 20.6 of [8], the solution fi of above boundary value
problem converges to a constant function provided E is parabolic.
Fix R0 large enough that E(R0) = B(R0) ∩ E 6= ∅, R > R0 let φ be a nonnegative cutoff function
satisfying

φ = 1 on E(R)− E(R0)

and
φ = 0on ∂E

12



with
|∇φ| ≤ C1.

Since λ(E) > 0, we have

0 < λ0(E) ≤

∫
E(R) |∇(φfi)|2dV ol∫
E(R) |φfi|2dV ol

,

or equivalently ∫
E(R)

|φfi|2dV ol ≤
1

λ0(E)

∫
E(R)

|∇(φfi)|2dV ol.

Since ∫
E(R)

|∇(φfi)|2dV ol

=

∫
E(R)

|∇φ|2f2
i dV ol + 2

∫
E(R)

φfi〈∇φ,∇fi〉dV ol +

∫
E(R)

φ2|∇fi|dV ol

=

∫
E(R)

|∇φ|2f2
i dV ol +

1

2

∫
E(R)
〈∇(φ)2,∇(fi)

2〉dV ol +

∫
E(R)

φ2|∇fi|dV ol

=

∫
E(R)

|∇φ|2f2
i dV ol,

we have that for any i, j, 0 < i < j,∫
E(Ri)−E(R0)

f2
j dV ol ≤

C1

λ0(E)

∫
E(R0)

f2
j dV ol.

fj converges to a constant, so letting j →∞, we have that

V ol(E(Ri))− V ol(E(R0)) ≤ C2V ol(E(R0)).

Letting i→∞, we conclude that E has finite volume.

Lemma 5.9. Γ \G/K has at most one non-parabolic end. Furthermore, it has at most one end
with infinite volume.

Proof. For our purpose, let us assume that Γ \G/K has at least two non-parabolic ends, otherwise,
there is nothing to prove. For the ball Bp(R0) centering at p of Γ \G/K, take R0 sufficiently large
so that (Γ \G/K) \Bp(R0) has at least two disjoint non-parabolic ends E1 and E2. For Ri > R0,
we can solve the following boundary value problem on E1 to get fRi ,

∆fRi = 0 on Bp(Ri)

fRi = 1 on E1 ∩ ∂Bp(Ri)

fRi = 0 on ∂Bp(Ri) \ E1

Since E1, E2 are non-parabolic, there is a subsequence of {fi} converging to a harmonic function f
defined on Γ \G/K such that

sup
Γ\G/K

f = sup
E1

f = 1 (43)

inf
Γ\G/K

f = inf
Ei

f = 0, i 6= 1. (44)
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According to arguments of Li-Tam in [9] and [10], let Bp(R0) be a ball of M = Γ \ G/K, the
function f constructed above is harmonic on M −Bp(R0). Lemma 1.4 of [10] gives a sequence of
harmonic functions {fi} on Bp(Ri)−Bp(R0) with fi = f on ∂Bp(R0) and fi = 0 on ∂Bp(Ri) such
that f = lim fi. Then ∫

Bp(Ri)−Bp(R0)
|∇fi|2dV ol +

∫
Bp(Ri)−Bp(R0)

fi∆fidV ol (45)

=

∫
∂(Bp(Ri)−Bp(R0))

fi
∂fi
∂r

dS (46)

=

∫
∂Bp(R0)

fi
∂fi
∂r

dS (47)

For i < j, ∫
Bp(Ri)−Bp(R0)

|∇fj |2dV ol ≤
∫
Bp(Rj)−Bp(R0)

|∇fj |2dV ol (48)

=

∫
Bp(R0)

fj
∂fj
∂r

dS (49)

∫
B(R0) fj

∂fj
∂r dS is uniformly bounded according to [8]. Consider the function |∇ log fi|2, |∇ log fi|2

is uniformly bounded on ∂B(R0).
Let x0 ∈ ∂B(R0) be the maximum point of |∇ log fi|2, and denote h = log fi, then the strong
maximum principle yields

∂|∇h|2

∂r
(x0) < 0 (50)

Choose orthonormal frame {e1, ..., en} at x0, such that e1 = ∇h
|∇h| = − ∂

∂r , which is the outward

normal vector at ∂B(R0).
Since |∇h|e1 = ∇h, we have

〈|∇h|e1, e1〉 = 〈∇h, e1〉 =
∂h

∂x1
= |∇h| (51)

Then
∂

∂r
|∇h|2 =

∂

∂r
(
∂h

∂x1
)2

= − ∂

∂r
[−(

∂h

∂x1
)2]

= 〈−e1,∇(
∂h

∂x1
)2〉

= 〈−e1,
∂

∂x1
(
∂h

∂x1
)2, ...,

∂

∂xn
(
∂h

∂xn
)2〉

= − ∂

∂x1
(
∂h

∂x1
)2

= −2
∂h

∂x1

∂2h

∂x2
1

= −2|∇h|∂
2h

∂x2
1
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From the inequality (5.10), we have that

− 2|∇h|∂
2h

∂x2
1

< 0 (52)

Since the Laplacian of h is given by

∆h = −|∇h|2 =
∂2

∂x2
1

+H
∂h

∂x1
(53)

where H is the mean curvature of ∂B(R0) with respect to e1. Now we obtained

|∇h|3 +H|∇h|2 < 0 (54)

Thus the minimum value of H must be negative. Denote it as H0 = min∂E H < 0, and we obtained
the inequality that

|∇h| ≤ −H ≤ −H0 (55)

and

|∇h|2 ≤ H2
0 (56)

We can smooth out ∂B(R0) so that |H0| <∞, and this proves that |∇ log fi| is uniformly bounded
on ∂B(R0). Since fi = 1 on ∂B(R0), we can conclude that |∂fi∂r | is uniformly bounded on ∂B(R0)
by chain rule:

|∇ log fi| =
|∇fi|
|fi|

= |∇fi| = |
∂fi
∂r
| (57)

Let j →∞ and i→∞, we obtain that∫
M−Bp(R0)

|∇f |2dV ol ≤
∫
∂Bp(R0)

f
∂f

∂r
dS <∞ (58)

Thus f is of finite Dirichlet energy and for each non-parabolic end, we can get linearly independent
harmonic functions on it. These linearly independent harmonic functions including constant
functions form a linear space whose dimension is bounded below by the number of non-parabolic
ends. Furthermore, according to [11], the exterior differential of a harmonic function with finite
Dirichlet integral is an L2 harmonic 1-form. We have

dimH1
L2(Γ \G/K) + 1 ≥ number of non-parabolic ends.

Since λ0(Γ \G/K) > 0, we have

dimH1
L2(Γ \G/K) + 1 ≥ number of ends with infinite volumes.

It is proved that the space of L2-harmonic 1-form of Γ \G/K = 0, thus dimH1
L2(Γ \G/K) = 0, we

conclude that Γ \G/K has at most one end of infinite volume.
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5.2 Geometrical Finiteness

To proof Theorem 1.3, one needs some results of geometrical finiteness with negative curvature. We
recall B. Bowditch’s classification on geometrical finiteness of variable negative curvature. For more
details on the work of B. Bowditch, please refer [2].

A Hadamard manifold is a complete, simply connected Riemannian manifold of nonpositive
curvature. By a pinched Hadamard manifold, we shall mean a Hadamard manifold of pinched
negative curvature. Let Γ be a discrete group of isometries of a pinched Hadamard manifold, X. To
the orbifold Γ \X, we adjoin the quotient Γ \Ω, where Ω is the domain of discontinuity of the ideal
sphere at infinity. Then MC(Γ) = Γ \ (X ∪ Ω) is an orbifold with boundary. The main result of [2]
is summarized as follows.

Theorem 5.10. Let X be a Hadamard manifold with pinched negative curvature, Γ be a discrete
subgroup of isometry of X. Then the following definitions of geometrical finiteness of Γ are equivalent.

F1. MC(Γ) has finitely many ends, each a parabolic end.

F2. The limit set Λ consists entirely of conical limit points and bounded parabolic fixed points.

F4. For some positive number ε ∈ (0, ε(n, k)), core(M)∩thickε(M) is compact, where ε(n, k) is the
Margulis constant, core(M) is the convex core of M .

F5. There is a bound on the orders of every finite subgroup of Γ, and for some η > 0, Nηcore(M)
has finite volume, where Nηcore(M) is the η-neighbourhood.

We now prove Theorem 1.3:

Proof. Let A be the compact component of Γ \Ω, e(A) be the end corresponding to A and E(A) be
a neighborhood of e(A). By Theorem 1.1, we have that Γ \Hn

K − E(A) is of finite volume. Denote
M = Γ \Hn

K − E(A). Let X be the Riemannian universal covering of M such that M = Γ′ \X
where Γ′ ∼= π1M . Since M has finite volume, Γ′ is ”F5”, so it is ”F1” which completes the proof.
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