Simplicial and Persistent Homology

Xiao Wang

Institute for Theoretical Computer Science School of Computing and Artificial Intelligence ${\bf SUFE}$

Geometric Simplex

Given a set $\{\mathbf{a}_0, ..., \mathbf{a}_n\}$ of points of \mathbb{R}^d , this set is said to be **geometrically independent** if for any real scalars t_i , the equations

$$\sum_{i=0}^{n} t_i = 0 \quad \text{and} \quad \sum_{i=0}^{n} t_i \mathbf{a}_i = 0$$

imply that

$$t_0 = t_1 = \dots = t_n = 0.$$

Easy to verify that in general $\{\mathbf{a}_0,...,\mathbf{a}_n\}$ is geometrically independent if and only if the vectors

$$\mathbf{a}_1 - \mathbf{a}_0, ..., \mathbf{a}_n - \mathbf{a}_0$$

are linearly independent in the sense of ordinary linear algebra.

Given a geometrically independent set of points $\{\mathbf{a}_0, ..., \mathbf{a}_n\}$, we define the *n*-plane P spanned by these points to consist of all points \mathbf{x} of \mathbb{R}^d such that

$$\mathbf{x} = \sum_{i=0}^{n} t_i \mathbf{a}_i,$$

for some scalars t_i with $\sum t_i = 1$. The plane P can also be described as the set of all points \mathbf{x} such that

$$\mathbf{x} = \mathbf{a}_0 + \sum_{i=0}^{n} t_i (\mathbf{a}_i - \mathbf{a}_0)$$

for some scalars $t_1, ..., t_n$.

An affine transformation T on \mathbb{R}^d is a map that is a composition of translations, i.e., $T(\mathbf{x}) = \mathbf{x} + \mathbf{p}$ for fixed \mathbf{p} , and non-singular linear transformations, i.e., $A\mathbf{x}$, det $A \neq 0$.

Proposition

If T is an affine transformation, then T preserves geometrically independent sets. Furthermore, T carries the plane P spanned by $\mathbf{a}_0,...,\mathbf{a}_n$ onto the plane spanned by $T\mathbf{a}_0,...,T\mathbf{a}_n$.

Definition

Let $\{\mathbf{a}_0, ..., \mathbf{a}_n\}$ be a geometrically independent set in \mathbb{R}^d . The *n*-simplex σ spanned by $\mathbf{a}_0, ..., \mathbf{a}_n$ is defined to be the set of all points \mathbf{x} of \mathbb{R}^d such that

$$\mathbf{x} = \sum_{i=0}^{n} t_i \mathbf{a}_i$$

where $\sum_{i=0}^{n} t_i = 1$ and $t_i \geq 0$ for all $i \in [n]$. The numbers t_i are uniquely determined by \mathbf{x} , and they are called the **barycentric coordinates** of the point \mathbf{x} of σ with respect to $\mathbf{a}_0, ..., \mathbf{a}_n$.

The points \mathbf{a}_i are called **vertices** of σ , the number n is called the **dimension**. Any simplex spanned by a subset of $\{\mathbf{a}_0, ..., \mathbf{a}_n\}$ is called a **face** of σ . The face of σ spanned by $\mathbf{a}_1, ..., \mathbf{a}_n$ is called the face **opposite** \mathbf{a}_0 . The faces of σ different from σ itself are called the **proper faces** of σ . Their union is called the **boundary** of σ .

Simplicial complexes in \mathbb{R}^d

Definition

A simplicial complex K in \mathbb{R}^d is a collection of simplices in \mathbb{R}^d such that

- ightharpoonup Every face of a simplex of K is in K.
- \triangleright The intersection of any two simplexes of K is a face of each of them.

Definition

If L is a subcollection of K that contains all faces of its elements, then L is a simplicial complex in its own rights; it is called a **subcomplex** of K. One subcomplex of K is the collection of all simplicies of K of dimension at most p; it is called the p-skeleton of K and is denoted K^p . Let |K| be the subset of \mathbb{R}^d that is the union of the simplices of K. The space |K| is called the underlying space of K

Definition

If \mathbf{v} is a vertex of K, the **star** of \mathbf{v} in K, denoted by $\mathrm{St}(\mathbf{v})$, is the union of the interiors of those simplices of K that have \mathbf{v} as a vertex. Its closure, denoted $\bar{\mathrm{St}}(\mathbf{v})$, is called the **closed star** of \mathbf{v} in K. It is the union of all simplices of K having \mathbf{v} as a vertex, and is the polytope of a subcomplex of K. The **link** of \mathbf{v} is defined to be $\bar{\mathrm{St}}(\mathbf{v}) - \mathrm{St}(\mathbf{v})$, denoted $\mathrm{Lk}(\mathbf{v})$.

Fundamental Theorem of Abelian Groups

An abelian group is written additively, 0 denotes the neutral element, and -g denotes the additive inverse of g. If n is a positive integer, then ng denotes the n-fold sum g + ... + g, and (-n)g denotes n(-g).

Homomorphisms

If $f: G \to H$ is a homomorphism, the kernel of f is the subgroup $f^{-1}(0)$ of g, the image of f is the subgroup f(G) of H, and the cokernel of f is the quotient group H/f(G).

The map f is an monomorphism if and only if the kernel of f vanishes, and f is an epimorphism if and only if the cokernel of f vanishes, in this case, f induces an isomorphism $G/\ker f\cong H$.

Free abelian groups

An abelian group g is free if it has a *basis*, that is if there is a family $\{g_{\alpha}\}_{{\alpha}\in J}$ of elements of G such that each $g\in G$ can be written uniquely as a finite sum

$$g = \sum n_{\alpha} g_{\alpha},$$

with n_{α} an integer. Uniqueness implies that each element g_{α} has infinite order.

- ▶ If each $g \in G$ can be written as a finite sum $g = \sum n_{\alpha}g_{\alpha}$, but not necessarily uniquely, we say that the family $\{g_{\alpha}\}$ generates G.
- ▶ If the set $\{g_{\alpha}\}$ is finite, we say that G is finitely generated.
- \triangleright The number of elements in a basis for G is called the rank of G.

Construct free abelian groups

A specific way of constructing free abelian groups is the following: Given a set S, define the free abelian group G generated by S to be the set of all functions $\phi: S \to \mathbb{Z}$ such that $\phi(x) \neq 0$ for only finitely many values of x; Given $x \in S$, there is a characteristic function ϕ_x defined by

$$\phi_x(y) = 0$$
 if $y \neq x$, 1 if $y = x$.

The functions $\{\phi_x\}_{x\in S}$ form a basis for G, for each function $\phi\in G$ can be written uniquely as a finite sum

$$\phi = \sum n_x \phi_x,$$

where $n_x = \phi(x)$ and the summation extends over all x for which $\phi(x) \neq 0$.

Abusing notation, we can identify the element $x \in S$ with its characteristic function ϕ_x , so that the general element of G can be written uniquely as a finite formal linear combination

$$\phi = \sum n_{\alpha} x_{\alpha}$$

Torsion subgroup

Let G be an abelian group, an element g of G has finite order if ng = 0 for some positive integer n. The set of all elements of finite order in G is a subgroup T of G, called the *torsion subgroup*. If T vanishes, we say G is *torsion-free*. A free abelian group is necessarily torsion free, but not conversely.

If T consists of only finitely many elements, then the number of elements in T is called the order of T. If T has finite order, then each element of T has finite order, but not conversely.

Lemma

Let A be a free abelian group of rank n. If B is a subgroup of A, then B is free abelian of rank $r \leq n$.

Proof

Without loss of generality, we can assume that B is a subgroup of the n-fold direct product \mathbb{Z}^n . We construct a basis for B as follows: Let $\pi_i : \mathbb{Z}^n \to \mathbb{Z}$ denote projection on the ith coordinate. For each $m \leq n$, let B_m be the subgroup of B defined by the equation

$$B_m = B \cap (\mathbb{Z}^m \times \mathbf{0}).$$

That is, B_m consists of all $\mathbf{x} \in B$ such that $\pi_i(\mathbf{x}) = 0$ for i > m. Now the homomorphism

$$\pi_m: B_m \to \mathbb{Z}$$

carries B_m onto a subgroup of \mathbb{Z} . If this subgroup is trivial, let $\mathbf{x}_m = \mathbf{0}$; otherwise, choose $\mathbf{x}_m \in B_m$ so that its image $\pi_m(\mathbf{x}_m)$ generates this subgroup.

we claim that the non-zero elements of the set $\{\mathbf{x}_1,...,\mathbf{x}_n\}$ form a basis for B.

▶ First, we show that for each m, the elements $\mathbf{x}_1, ..., \mathbf{x}_m$ generate B_m . For m = 1, we have

$$B_1 = B \cap (\mathbb{Z}^1 \times \mathbf{0}).$$

Then \mathbf{x}_1 is chosen from B_1 so that its image $\pi_1(\mathbf{x}_1)$ generates the image subgroup of \mathbb{Z} under the projection $\pi_1: B_1 \to \mathbb{Z}$.

Assume that $\mathbf{x}_1, ..., \mathbf{x}_{m-1}$ generate B_{m-1} ; let $\mathbf{x} \in B_m$. Now $\pi_m(\mathbf{x}) = k\pi_m(\mathbf{x}_m)$ for some integer k. It follows that

$$\pi_m(\mathbf{x} - k\mathbf{x}_m) = 0,$$

so that $\mathbf{x} - k\mathbf{x}_m$ belongs to B_{m-1} . Then

$$\mathbf{x} - k\mathbf{x}_m = k_1\mathbf{x}_1 + \dots + k_{m-1}\mathbf{x}_{m-1}$$

by the induction hypothesis. Hence $\mathbf{x}_1, ..., \mathbf{x}_m$ generate B_m .

▶ To show that $\{\mathbf{x}_1, ..., \mathbf{x}_m\}$ form a basis, it remains to show that the elements are independent. The result is trivial when m = 1. Suppose it is true for m - 1. Then we show that if

$$\lambda_1 \mathbf{x}_1 + \dots + \lambda_m \mathbf{x}_m = \mathbf{0},$$

then it follows that for each i, $\lambda_i = 0$ whenever $\mathbf{x}_i \neq \mathbf{0}$. Applying the map π_m , we have

$$\lambda_m \pi_m(\mathbf{x}_m) = 0.$$

From this equation, it follows that either $\lambda_m = 0$ or $\mathbf{x}_m = \mathbf{0}$. Since if $\lambda_m \neq 0$, then $\pi_m(\mathbf{x}_m) = 0$, which implies $\mathbf{x}_m = \mathbf{0}$. We can now conclude two things:

$$\lambda_m = 0 \text{ if } \mathbf{x}_m \neq \mathbf{0},$$

$$\lambda_1 \mathbf{x}_1 + \dots + \lambda_{m-1} \mathbf{x}_{m-1} = \mathbf{0}.$$

The induction hypothesis applies to show that for $i < m, \lambda_i = 0$ whenever $\mathbf{x}_i \neq \mathbf{0}$.

Definition

Let G and G' be free abelian groups with bases $a_1, ..., a_n$ and $a'_1, ..., a'_m$. If $f: G \to G'$ is a homomorphism, then

$$f(a_j) = \sum_{i=1}^{m} \lambda_{ij} a_i'$$

for unique integers λ_{ij} . The matrix (λ_{ij}) is called the *matrix of* f relative to the bases for G and G'.

Theorem

Let G and G' be free abelian groups of ranks n and m. Let $f: G \to G'$ be a homomorphism. Then there are basis for G and G' such that, relative to these bases, the matrix of f has the form

$$B = \begin{bmatrix} b_1 & & 0 & & \\ & \ddots & & 0 & \\ 0 & & b_l & & \\ & & 0 & & 0 & \end{bmatrix}$$

where $b_i \geq 1$ and $b_1|b_2...|b_l$.

Fundamental theorem of finitely generated abelian groups

We investigate two main theorems of abelian groups.

Theorem

Let F be a free abelian group. If R is a subgroup of F, then R is also a free abelian group. If F has rank n, then R has rank $r \le n$; furthermore, there is a basis $e_1, ..., e_n$ for F and integers $t_1, ..., t_k$ with $t_i > 1$ such that

- 1. $t_1e_1, ..., t_ke_k, e_{k+1}, ..., e_r$ is a basis for R.
- 2. $t_1|t_2|...|t_k$, that is, t_i divides t_{i+1} for all i.

The integers $t_1, ..., t_k$ are uniquely determined by F and R, although the basis $e_1, ..., e_n$ is not.

Theorem

Let G be a finitely generated abelian group. Let T be its torsion subgroup.

- 1. There is a free abelian subgroup H of G having finite rank β such that $G = H \oplus T$.
- 2. There are finite cyclic group $T_1, ..., T_k$ where T_i has order $t_i > 1$, such that $t_1|t_2|...|t_k$ and

$$T = T_1 \oplus ... \oplus T_k$$
.

3. The numbers β and $t_1, ..., t_k$ are uniquely determined by G.

 β is called the betti number of G and the numbers $t_1, ..., t_k$ are called the torsion coefficients of G. Note that β is the rank of the free abelian group G/T.

Homology Groups

Definition

Let σ be a simplex. Define two ordering of its vertex set to be equivalent if they differ from one another by an even permutation. Each of these classes is called an **orientation** of σ .

If the points $\mathbf{v}_0, ..., \mathbf{v}_k$ are independent, we use the symbol

$$\mathbf{v}_0 \dots \mathbf{v}_k$$

to denote the simplex they span, and use the symbol

$$[\mathbf{v}_0,...,\mathbf{v}_k]$$

to denote the oriented simplex consisting of the simplex $\mathbf{v}_0 \dots \mathbf{v}_k$ and the equivalence class of the particular ordering $(\mathbf{v}_0, ..., \mathbf{v}_k)$.

Definition

Let K be a simplicial complex. A k-chain on K is a function c from the set of oriented k-simplices of K to the integers, such that:

- $c(\sigma) = -c(\sigma')$ if σ and σ' are opposite orientations of the same simplex.
- $ightharpoonup c(\sigma) = 0$ for all but finitely many oriented k-simplices σ .

We denote $C_p(K)$ the group of p-chains of K. If σ is an oriented simplex, the **elementary chain** c corresponding to σ is the function defined by

$$c(\sigma) = 1$$

 $c(\sigma') = -1$ if σ' is the opposite orientation of σ ,

 $c(\tau) = 0$ for all other oriented simplices τ .

Lemma

 $C_p(K)$ is free abelian, a basis for $C_p(K)$ can be obtained by orienting each p-simplex and using the corresponding elementary chains as a basis.

Proof.

(Sketched) Each chain is written as a linear combination of elementary chains:

$$c = \sum n_i \sigma_i.$$

Roughly, the group $C_p(K)$ can be seen as the "vector space" generated by the set of p-simplices, with coefficients in \mathbb{Z} .

Definition

We define a homomorphism

$$\partial_p: C_p(K) \to C_{p-1}(K)$$

called the **boundary operator**. If $\sigma = [\mathbf{v}_0, ..., \mathbf{v}_p]$ is an oriented simplex with p > 0, we define

$$\partial_p \sigma = \partial_p [\mathbf{v}_0, ..., \mathbf{v}_p] = \sum_{i=0}^p (-1)^i [\mathbf{v}_0, ..., \hat{\mathbf{v}}_i, ..., \mathbf{v}_p]$$

where $\hat{\mathbf{v}}$ means that the element is deleted from the array.

Check: ∂_p is well defined and maps a simplex to its boundary in a usual way, i.e. for oriented 2-simplex.

An important property of the boundary map.

Lemma

$$\partial_{p-1} \circ \partial_p = 0.$$

Proof.

Compute

$$\partial_{p-1}\partial_p[\mathbf{v}_0,...,\mathbf{v}_p] = \sum_{i=0}^p (-1)^i \partial_{p-1}[\mathbf{v}_0,...,\hat{\mathbf{v}}_i,...,\mathbf{v}_p]$$
(1)

$$= \sum_{i < i} (-1)^{i} (-1)^{j} [..., \hat{\mathbf{v}}_{j}, ..., \hat{\mathbf{v}}_{i}, ...]$$
 (2)

$$+\sum_{i>j}(-1)^{i}(-1)^{j-1}[...,\hat{\mathbf{v}}_{i},...,\hat{\mathbf{v}}_{j},...].$$
 (3)

The terms of these two summations cancel in pairs.

Definition

The kernel of

$$\partial_p: C_p(K) \to C_{p-1}(K)$$

is called the group of p-cycles and denoted $Z_p(K)$. The image of

$$\partial_{p+1}: C_{p+1}(K) \to C_p(K)$$

is called the group of **p-boundaries** and is denoted $B_p(K)$. By the preceding lemma, each boundary of a p+1 chain is automatically a p-cycle. That is, $B_p(K) \subset Z_p(K)$. We define

$$H_p(K) = Z_p(K)/B_p(K),$$

called the pth **homology group** of K.

Example

The complex K is the figure, whose underlying space is the boundary of a square with edges e_1, e_2, e_3, e_4 . The group $C_1(K)$ is free abelian of rank 4; any 1-chain c has the form of $\sum n_i e_i$. Let the vertex labeled as $e_1, e_2 : v_1, e_2, e_3 : v_2, e_3, e_4 : v_3$, and $e_4, e_1 : v_4$. The boundary map ∂_1 on c is

$$\partial_1(\sum n_i e_i) = \sum n_i \partial_1 e_i$$

where

$$\partial_1 e_1 = \partial_1 [v_4, v_1] = v_1 - v_4 \tag{4}$$

$$\partial_1 e_2 = \partial_1 [v_1, v_2] = v_2 - v_1 \tag{5}$$

$$\partial_1 e_3 = \partial_1 [v_2, v_3] = v_3 - v_2 \tag{6}$$

$$\partial_1 e_4 = \partial_1 [v_3, v_4] = v_4 - v_3. \tag{7}$$

Then

$$\sum n_i \partial_1 e_i = n_1 \partial_1 e_1 + n_2 \partial_1 e_2 + n_3 \partial_1 e_3 + n_4 \partial_1 e_4 \tag{8}$$

$$= n_1(v_1 - v_4) + n_2(v_2 - v_1) + n_3(v_3 - v_2) + n_4(v_4 - v_3)$$
(9)

$$= (n_1 - n_2)v_1 + (n_2 - n_3)v_2 + (n_3 - n_4)v_3 + (n_4 - n_1)v_4.$$
 (10)

This means that c is a 1-cycle, i.e., $\partial_1 c = 0$, if and only if $n_1 = n_2 = n_3 = n_4$, we can conclude that $Z_1(K)$ is generated by $e_1 + e_2 + e_3 + e_4$, i.e.,

$$Z_1(K)=\mathbb{Z}.$$

Since there are no 2-simplex in K, so $B_1(K)$ is trivial. Therefore,

$$H_1(K) = Z_1(K)/B_1(K) (11)$$

$$= Z_1(K)/\{0\} \tag{12}$$

$$=Z_1(K) \tag{13}$$

$$=\mathbb{Z}.\tag{14}$$

We say that a chain c is **carried by** a subcomplex L of K if c has value 0 on every simplex that is not in L. And we say that two p-chains c and c' are **homologous** if

$$c - c' = \partial_{p+1}d$$

for some p+1 chain d. In particular, if

$$c = \partial_{p+1}d$$

, we say that c is **homologous to zero**.

Persistent Homology

Definition

Let K be a simplicial complex. A filtration of K is a sequence of subcomplexes

$$K_1 \le K_2 \le \dots \le K_m = K.$$

Persistent homology measures how homology elements persist through steps of a filtration. A filtration of a simplicial complex K can be expressed as a sequence of natural inclusion:

$$K_1 \stackrel{i_{1,2}}{\hookrightarrow} K_2 \stackrel{i_{2,3}}{\hookrightarrow} \dots \stackrel{i_{m-1,m}}{\hookrightarrow} K_m = K.$$

Given $q \in \{0, 1, 2...\}$ we can apply homology $H_q(\cdot)$ to obtain a sequence of homology groups connected by linear maps:

$$H_q(K_1) \stackrel{(i_{1,2})_*}{\to} H_q(K_2) \stackrel{(i_{2,3})_*}{\to} \dots \stackrel{(i_{m-1,m})_*}{\to} H_q(K_m) = H_q(K)$$

Definition

Assume K is simplical complex. Given a filtration

$$K_1 \le K_2 \le \dots \le K_m = K$$

of K, the corresponding q-dimensional $persistent\ homology$ groups are images of the maps

$$(i_{s,t})_*: H_q(K_s) \to H_q(K_t)$$

for all $0 \le s \le t \le m$. The corresponding ranks $\beta_{s,t}^q = \operatorname{rank}(i_{s,t})_*$ are called persistent betti numbers.

Questions?

