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Definition
The Riemannian gradient of a smooth function f : M ! R on a Riemannian
manifold M is a vector field on M denoted by gradf such that, for all x 2 M ,
gradf(x) is the unique tangent vector in TxM satisfying:

df(x)v = hv, gradf(x)ix

for all v 2 TxM , where df(x) is 1-form defined on TxM .

In local coordinate system, gradient can be written

gradf(x) =
X

i,j

g
ij @f

@xj

@

@xi
.



Proposition
Let f : M ! R be a smooth function on Riemannian manifold M equipped with a
retraction Retr. Then for any x 2 M ,

gradf(x) = grad(f � Retrx)(0),

where f � Retrx : TxM ! R is defined on a Euclidean space.

Proof.
By the chain rule, for any tangent vector v 2 TxM ,

D(f � Retrx)(0)[v] = Df(Retrx(0))[DRetrx(0)[v]] = Df(x)[v],

since Retrx(0) = x and DRetrx(0) is the identity map. The definition of gradient
gives

hgrad(f � Retrx)(0), vix = hgradf(x), vix.



First-order optimality conditions

Proposition
Let f : M ! R be a smooth function on a Riemannian manifold. If x is a local
minimizer of f , then gradf(x) = 0.

Given initial point x0 2 M and a retraction on M , iterate

xk+1 = Retrx(�⌘kgradf(xk))

is called Riemannian gradient descent.

Assumptions

I There exists f⇤ 2 R such that f(x) � f
⇤ for all x 2 M .

I At each iteration, the algorithm achieves su�cient decrease, in that there
exists a constant c > 0 such that for all k

f(xk)� f(xk+1) � c kgradf(xk)k 2
.



Proposition
Let f be a smooth function satisfying above assumptions. Let x0, x1, ... be iterates
generated by RGD with constant c. Then

lim
k!1

kgradf(xk)k = 0.

Furthermore, for any K � 1, there exists k in 0, ...,K � 1 such that

gradf(xk) 
r

f(x0)� f⇤

c

1p
K
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Definition
Let M be a Riemannian manifold, equipped with the Riemannian connection r.
The Riemannian Hessian of f at x is a linear operator Hessf(x) : TxM ! TxM

defined as follows:
Hessf(x)u = rugradf

In general, if we consider rX as an operator that maps u to ruX, rgradf can be
computed in local coordinate system, following an alternative definition of
connection.



Let E be a real vector bundle on M , and �(E) is the set of smooth sections of E
on M .

Definition (Connection on general vector bundle)

A connection on a vector bundle E is a map

r : �(E) ! �(T ⇤
M ⌦ E),

which satisfies the following conditions:

1) For any s1, s2 2 �(E),
r(s1 + s2) = Ds1 +Ds2

2) For s 2 �(E) and any ↵ 2 C
1
M

r(↵s) = d↵⌦ s+ ↵Ds

Suppose X is a smooth tangent vector field on M and s 2 �(E). rXs = hX,rsi
returns a value by pairing between TM and T ⇤M (evaluation of vector and its
dual).



If r is defined on tangent bundle, choose any local coordinate system (U, xi) of M ,
then the natural basis {@i} forms a local frame field of the tangent bundle TM on
U . Using Christo↵el symbol, we have the following expansion

r@i =
X

k,j
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ikdxk ⌦ @j .

The calculation rule of connection gives rgradf
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Riemannian gradient descent with stepsize ↵t

xt+1 = Expxt
(�↵tgradf(xt))



Geodesic Convexity

A non convex function f : R2 ! R.



When constrained on an arc of a circle, the function can be convex along the arc.



Geodesically convex set
A set U ⇢ M is geodesically convex if for any x,y 2 U , there is a geodesic � with
�(0) = x, �(1) = y and �(t) 2 U for all t 2 [0, 1].

Geodesically convex function
f is call ed geodesically convex on a g.c. set U if for any x,y 2 M and any
geodesic � connecting x and y, it holds that

f(�(t))  (1� t)f(x) + tf(y).



Definition
A function f : S ! R is geodesically µ-strongly convex for some µ > 0 if the set S
is geodesically convex and for any geodesic segment c : [0, 1] ! M whose image is
in S we have

f(c(t))  (1� t)f(c(0)) + tf(c(1))� t(1� t)µ

2
L(c)2,

where L(c) = kc0(0)k is the length of the geodesic segment. The latter is
equivalent to the requirement that f � c : [0, 1] ! R be µL(c)2-strongly convex in
the usual sense.



Theorem
If f : S ! R is geodesically strictly convex, then it admits at most one local
minimizer, which is necessarily the global minimizer.

When a geodesically convex function admits a maximizer, this maximizer typically
occurs on the ”boundary” of the geodesically convex domain.

I If M is a connected, compact Riemannian manifold and f : M ! R is
continuous and geodesically convex, then f is constant.

I If S1 is a geodesically convex set in a Riemannian manifold M1, and similarly
for S2 in M2, then S1 ⇥ S2 is geodesically convex in M1 ⇥M2.

I If S ! R is geodesically convex, then f is continuous on the interior of S.



Di↵erentiable geodesically convex functions

Theorem
Let S be a geodesically convex set on a Riemannian manifold M and f be a real
function, di↵erentiable in a neighborhood of S. Then, f : S ! R is geodesically
convex if and only if for any geodesic segment c : [0, 1] ! M contained in S we
have:

t 2 [0, 1], f(c(t)) � f(x) + thgradf(x), c0(0)ix.

Moreover, f is geodesically µ-strongly convex if and only if, whenever c
0(0) 6= 0,

t 2 [0, 1], f(c(t)) � f(x) + thgradf(x), c0(0)ix + t
2µ

2
L(c)2.

Finally, f is geodesically strictly convex if and only if, whenever c
0(0) 6= 0,

t 2 (0, 1], f(c(t)) > f(x) + thgradf(x), c0(0)ix.



Logarithmic map
For x 2 M , let Logx denote the logarithmic map at x,

Logx(y) = argminu2TxMExpx(u) = y

with domain such that this is uniquely defined.

Riemannian Accelerated Gradient Descent (Zhang & Sra)

yt = Expxt

�
s1Logxt

(vt)
�

xt+1 = Expyt
(�↵gradf(yt))

vt+1 = Expyt

⇣
s2Logyt

(vt)� s3gradf(yt)
⌘

where s1, s2 and s3 are parameters related to Lipschitz constant, geodesic
convexity and step-size.



Second-order optimality

Proposition
Consider a smooth function f : M ! R. If x is a local or global minimizer of f ,
then gradf(x) = 0 and Hessf(x) � 0.

Proof.
We can assume Hessf(x) is not positive semidefinite. Then there exists a tangent
vector v 2 TxM such that hHessf(x)[v], vix = �2a < 0, for some positive a. Let
c : I ! M be a smooth curve passing through x with velocity v at t = 0. Then,
using the Taylor expansion and the fact that gradf(x) = 0, we have

f(c(t)) = f(x) +
t
2

2
hHessf(x)[v], vix +O(t3) = f(x)� at

2 +O(t3).

Hence, there exists t0 such that

f(c(t)) < f(x) for all t 2 (0, t0],

contradicting the fact that x is a local minimum.



Riemannian Newton’s method

For second-order retractions, the Taylor expansion gives

f(Retrx(s)) ⇡ f(x) + hgradf(x), six +
1

2
hHessf(x)[s], six := mx(s).

A minimizer of mx must be a critical point of mx.

gradmx(s) = gradf(x) + Hessf(x)[s],

and s is a critical point if and only if

Hessf(x)[s] = �gradf(x).

As long as Hessf(x) is invertible, there exists a unique solution, and this can be
used to define the Newton method.

Solve Hessf(xk)[sk] = �gradf(xk), for sk 2 TxkM (1)

xk+1 = Retrxk(sk) (2)



Further reading: An Introduction to Optimization on Smooth Manifolds, Nicolas
Boumal


