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Definition

The Riemannian gradient of a smooth function f: M — R on a Riemannian
manifold M is a vector field on M denoted by gradf such that, for all x € M,
gradf(z) is the unique tangent vector in T, M satisfying:

df (z)v = (v, grad f (z))

for all v € T, M, where df (z) is 1-form defined on T, M.

In local coordinate system, gradient can be written

L Of 0
= v

]




Proposition

Let f: M — R be a smooth function on Riemannian manifold M equipped with a
retraction Retr. Then for any x € M,

gradf(z) = grad(f o Retr,)(0),
where f o Retr, : T, M — R is defined on a Fuclidean space.

Proof.
By the chain rule, for any tangent vector v € T, M,

D(f o Retr,)(0)[v] = Df(Retr;(0))[DRetr,(0)[v]] = Df(x)[v],

since Retr;(0) =  and DRetr;(0) is the identity map. The definition of gradient
gives

(grad(f o Retrz)(0),v), = (gradf(x), v)s.




First-order optimality conditions

Proposition

Let f: M — R be a smooth function on a Riemannian manifold. If x is a local
minimizer of f, then gradf(z) = 0.

Given initial point g € M and a retraction on M, iterate

Tp+1 = Retry(—nggradf(z))

is called Riemannian gradient descent.
Assumptions

» There exists f* € R such that f(z) > f* for all x € M.

> At each iteration, the algorithm achieves sufficient decrease, in that there
exists a constant ¢ > 0 such that for all k&

f(@e) = f(@rg1) > cllgradf(z)| 2.




Proposition
Let f be a smooth function satisfying above assumptions. Let xg,x1, ... be iterates
generated by RGD with constant c. Then

lim ||gradf(zg)| = 0.
k—ro0

Furthermore, for any K > 1, there exists k in 0, ..., K — 1 such that
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Definition
Let M be a Riemannian manifold, equipped with the Riemannian connection V.
The Riemannian Hessian of f at x is a linear operator Hessf(z) : T,M — T, M
defined as follows:

Hessf(z)u = V,gradf

In general, if we consider VX as an operator that maps u to V, X, Vgradf can be
computed in local coordinate system, following an alternative definition of
connection.




Let E be a real vector bundle on M, and T'(F) is the set of smooth sections of F
on M.

Definition (Connection on general vector bundle)

A connection on a vector bundle F is a map
V:I'(E) - T(T"M @ E),

which satisfies the following conditions:
1) For any s1,s9 € I'(F),
V(Sl + 82) = Ds1 + Dsy

2) For s € I'(E) and any o € C*°M
V(as) =da® s+ aDs

Suppose X is a smooth tangent vector field on M and s € I'(F). Vxs = (X, Vs)
returns a value by pairing between T'M and T * M (evaluation of vector and its
dual).




If V is defined on tangent bundle, choose any local coordinate system (U, z;) of M,
then the natural basis {0;} forms a local frame field of the tangent bundle TM on
U. Using Christoffel symbol, we have the following expansion
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The calculation rule of connection gives Vgrad f
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Riemannian gradient descent with stepsize ay

ri+1 = Exp,, (—aggrad f(z))

exp,(v) M




Geodesic Convexity

A non convex function f : R? — R.




When constrained on an arc of a circle, the function can be convex along the arc.




Geodesically convex set
A set U C M is geodesically convex if for any x,y € U, there is a geodesic v with
7(0) =%, v(1) =y and ~(t) € U for all t € [0,1].

Geodesically convex function

f is call ed geodesically convex on a g.c. set U if for any x,y € M and any
geodesic v connecting x and y, it holds that

f(y(@®) < (A=) f(x) +tf(y)




Definition
A function f: S — R is geodesically p-strongly convex for some p > 0 if the set .S
is geodesically convex and for any geodesic segment ¢ : [0, 1] — M whose image is
in S we have

t(l—2t)u
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where L(c) = || (0)|| is the length of the geodesic segment. The latter is
equivalent to the requirement that f oc: [0,1] — R be uL(c)?-strongly convex in
the usual sense.




Theorem
If f S — R is geodesically strictly convex, then it admits at most one local
minimizer, which is necessarily the global minimizer.

When a geodesically convex function admits a maximizer, this maximizer typically
occurs on the "boundary” of the geodesically convex domain.

» If M is a connected, compact Riemannian manifold and f: M — R is
continuous and geodesically convex, then f is constant.

> If 5] is a geodesically convex set in a Riemannian manifold M, and similarly
for So in Mo, then S; x Sy is geodesically convex in My x Ma.

> If S — R is geodesically convex, then f is continuous on the interior of S.




Differentiable geodesically convex functions

Theorem

Let S be a geodesically convex set on a Riemannian manifold M and f be a real
function, differentiable in a neighborhood of S. Then, f :.S — R is geodesically
convez if and only if for any geodesic segment c : [0,1] — M contained in S we
have:

te[0,1],  flc(t)) > f(x) +t{gradf(z),c(0))a-
Moreover, f is geodesically p-strongly convez if and only if, whenever ¢/(0) # 0,

t€0,1], f(c(t) > f(z) + t{grad f(z),c'(0))s +t2%L(C)2-
Finally, f is geodesically strictly convez if and only if, whenever ¢'(0) # 0,

te(0,1], flc(t)) > f(x) +t(gradf(z),c'(0))a-




Logarithmic map
For x € M, let Log, denote the logarithmic map at x,
Logy(y) = argminyer, p/Expy(u) =y
with domain such that this is uniquely defined.
Riemannian Accelerated Gradient Descent (Zhang & Sra)
y: = Exp,, (leogXt (Vt))
X¢+1 = Expy, (—agradf(y,))
viy1 = Expy, <32Logyt (vi) — 33gradf(yt))

where s1, so and s3 are parameters related to Lipschitz constant, geodesic
convexity and step-size.




Second-order optimality

Proposition
Consider a smooth function f: M — R. If x is a local or global minimizer of f,
then gradf(z) = 0 and Hessf(x) > 0.

Proof.

We can assume Hessf(x) is not positive semidefinite. Then there exists a tangent
vector v € T, M such that (Hessf(z)[v],v), = —2a < 0, for some positive a. Let
c¢: I — M be a smooth curve passing through « with velocity v at ¢ = 0. Then,
using the Taylor expansion and the fact that gradf(xz) = 0, we have

2
fe®) = f(z) + l%(HGSSJC(JU) [v], v)e + O(t%) = f(z) — at® + O(F’).

Hence, there exists ¢’ such that

fle(t)) < f(x) forall t € (0,t],

contradicting the fact that x is a local minimum.



Riemannian Newton’s method
For second-order retractions, the Taylor expansion gives

(Retry(s)) = f(@) + {grad (@), s} + 5 (Hessf (@)[s],5)a 1= ma(s).
A minimizer of m, must be a critical point of m.
gradin, (s) = grad f(z) + Hessf(2)[s],
and s is a critical point if and only if
Hessf(x)[s] = —gradf(x).

As long as Hessf(x) is invertible, there exists a unique solution, and this can be
used to define the Newton method.

Solve Hessf(xy)[si] = —gradf(xy), for si € Ty, M
Zp+1 = Retry, (sk)




Further reading: An Introduction to Optimization on Smooth Manifolds, Nicolas
Boumal




