Differential Geometry of Curves and Surfaces

Xiao Wang

Institute for Theoretical Computer Science School of Computing and Artificial Intelligence ${\bf SUFE}$

Curves

Definition

We say a vector function $\mathbf{f}:(a,b)\to\mathbb{R}^3$ is C^k if \mathbf{f} and its first k derivatives, \mathbf{f}' , \mathbf{f}'' , ... \mathbf{f}^k , exists and are all continuous. A parametrized curve is a C^3 map $\boldsymbol{\alpha}:I\to\mathbb{R}^3$ for some interval I=(a,b) or [a,b]. We say $\boldsymbol{\alpha}$ is regular if $\boldsymbol{\alpha}'(t)\neq 0$ for all $t\in I$.

 \triangleright The velocity of the curve (imagine some particle moving along α) is

$$\alpha'(t) = \frac{d\alpha}{dt} = \lim_{h \to 0} \frac{\alpha(t+h) - \alpha(t)}{h}$$

The velocity vector $\boldsymbol{\alpha}'(t)$ is tangent to the curve at $\boldsymbol{\alpha}(t)$ and its length $\|\boldsymbol{\alpha}'(t)\|$ is the speed of the curve.

The distance a particle travels is the integral of its speed,

Proposition

Let $\alpha:[a,b]\to\mathbb{R}^3$ be a piecewise C^1 parametrized curve. Then

$$length(oldsymbol{lpha}) = \int_a^b \left\|oldsymbol{lpha}'(t)
ight\|dt.$$

Define s(t) to be the arclength of the curve α on the interval [a,t]. If $\alpha'(t)=1$ for all $t \in [a,b]$, then s(t)=t-a. We say the curve α is parametrized by arclength if s(t)=t for all t.

Existence of arclength parametriziation

Suppose α is a regular curve, i.e., $\|\alpha'(t)\| > 0$ for all t, then the arclength function $s(t) = \int_a^t \|\alpha'(u)du\|$ is an increasing function (since $s'(t) = \|\alpha'(t)\| > 0$), and therefore has a differentiable inverse function t = t(s). Then the parametrization

$$\boldsymbol{\beta}(s) = \boldsymbol{\alpha}(t(s))$$

is parametrization by arclength. (Ex. verify)

Example

Consider the helix $\alpha(t) = (a\cos t, a\sin t, bt)$. Calculate $\alpha'(t)$, $\|\alpha'(t)\|$, and reparametrize α by arc-length.

$$\alpha'(t) = (-a\sin t, a\cos t, b)$$
$$\|\alpha'(t)\| = \sqrt{a^2 + b^2}$$

The arclength formula

$$s(t) = \int_0^t \|\boldsymbol{\alpha}'(u)\| \, du = \int_0^t \sqrt{a^2 + b^2} du = \sqrt{a^2 + b^2} t$$

gives the inverse function

$$t(s) = \frac{1}{\sqrt{a^2 + b^2}}s$$

Therefore, the reparametrization by s is

$$\beta(s) = \alpha(t(s)) = (a\cos\frac{1}{\sqrt{a^2 + b^2}}s, a\sin\frac{1}{\sqrt{a^2 + b^2}}s, \frac{b}{\sqrt{a^2 + b^2}}s).$$

Local Theory: Frenet Frame

The following result is from vector calculus.

Lemma

Suppose $\mathbf{f}, \mathbf{g} : (a, b) \to \mathbb{R}^3$ are differentiable and satisfy $\mathbf{f}(t) \cdot \mathbf{g}(t) = const$ for all t. Then $\mathbf{f}'(t) \cdot \mathbf{g}(t) = -\mathbf{f}(t) \cdot \mathbf{g}'(t)$. In particular $\|\mathbf{f}(t)\| = const$ if and only if $\mathbf{f}(t) \cdot \mathbf{f}'(t) = 0$ for all t.

Using this lemma repeatedly, we can construct the $Frenet\ frame$ of suitable regular curves.

- We assume throughout that the curve α is parametrized by arclength. Then $\alpha'(s)$ is the *unit tangent vector* to the curve, which we denote by $\mathbf{T}(s)$.
- ightharpoonup Since $\mathbf{T}(s)$ has constant length, $\mathbf{T}(s)$ will be orthogonal to $\mathbf{T}(s)$.
- Assuming $\mathbf{T}'(s) \neq \mathbf{0}$, define the *principal normal vector* $\mathbf{N}(s) = \frac{\mathbf{T}'(s)}{\|\mathbf{T}'(s)\|}$ and the curvature $\kappa(s) = \|\mathbf{T}'(s)\|$, and we have

$$\mathbf{T}'(s) = \kappa(s)\mathbf{N}(s).$$

▶ If $\kappa \neq 0$, define the binormal vector $\mathbf{B}(s) = \mathbf{T}(s) \times \mathbf{N}(s)$.

Then $\{\mathbf{T}(s), \mathbf{N}(s), \mathbf{B}(s)\}$ form a right-handed orthonormal basis for \mathbb{R}^3 . $\mathbf{N}'(s)$ must be a linear combination of $\mathbf{T}(s), \mathbf{N}(s)$ and $\mathbf{B}(s)$. Suppose there exist a(s), bs and c(s) such that

$$\mathbf{N}'(s) = a(s)\mathbf{T}(s) + b(s)\mathbf{N}(s) + c(s)\mathbf{B}(s)$$

note that

$$\mathbf{N}'(s) \cdot \mathbf{N}(s) = b(s) \|\mathbf{N}(s)\|^2 = b(s) = 0.$$

$$\mathbf{N}'(s) \cdot \mathbf{T}(s) = a(s) = -\mathbf{T}'(s)\mathbf{N}(s) = -\kappa(s)\mathbf{N}(s) \cdot \mathbf{N}(s) = -\kappa(s)$$

The component coefficient c(s) is called the *torsion* (denoted $\tau(s)$) of the curve and can be computed from

$$\tau(s) = \mathbf{N}'(s) \cdot \mathbf{B}(s),$$

and this gives the linear expansion of $\mathbf{N}'(s)$:

$$\mathbf{N}'(s) = -\kappa(s)\mathbf{T}(s) + \tau(s)\mathbf{B}(s).$$

Similarly, $\mathbf{B}'(s)$ must be a linear combination of $\mathbf{T}(s)$, $\mathbf{N}(s)$ and $\mathbf{B}(s)$, we can assume

$$\mathbf{B}'(s) = a(s)\mathbf{T}(s) + b(s)\mathbf{N}(s) + c(s)\mathbf{B}(s).$$

Apparently,

$$\mathbf{B}'(s) \cdot \mathbf{T}(s) = -\mathbf{T}'(s) \cdot \mathbf{B}(s) = \kappa(s)\mathbf{N}(s) \cdot \mathbf{B}(s) = 0 = a(s).$$

And

$$b(s) = \mathbf{B}'(s) \cdot \mathbf{N}(s) = -\mathbf{N}'(s) \cdot \mathbf{B}(s) = -\tau(s)$$

In the end, c(s) can be computed from

$$\mathbf{B}'(s) \cdot \mathbf{B}(s) = c(s) = 0,$$

and we have

$$\mathbf{B}'(s) = -\tau(s)\mathbf{N}(s)$$

In summary, the Frenet formulas of a curve is given by

$$\mathbf{T}'(s) = \kappa(s)\mathbf{N}(s)$$

$$\mathbf{N}'(s) = -\kappa(s)\mathbf{T}(s) + \tau(s)\mathbf{B}(s)$$

$$\mathbf{B}'(s) = -\tau(s)\mathbf{N}(s)$$

Surfaces

Parametrized surfaces

- Let U be an open set in \mathbb{R}^2 . A function $\mathbf{f}: U \to \mathbb{R}^m$ is called C^1 if \mathbf{f} and its partial derivatives $\frac{\partial \mathbf{f}}{\partial u}$ and $\frac{\partial \mathbf{f}}{\partial v}$ are all continuous.
- We will use (u, v) as coordinates in parameter space, and (x, y, z) as coordinates in \mathbb{R}^3 .
- ▶ If **f** is C^2 , then $\frac{\partial^2 \mathbf{f}}{\partial u \partial v} = \frac{\partial^2 \mathbf{f}}{\partial v \partial u}$.
- ▶ A regular parametrization of a subset $M \subset \mathbb{R}^3$ is a one-to-one function

$$\mathbf{x}: U \to M \subset \mathbb{R}^3$$
, so that $\mathbf{x}_u \times \mathbf{x}_v \neq \mathbf{0}$

for some open set $U \subset \mathbb{R}^2$. $(\mathbf{x}_u \text{ and } \mathbf{x}_v \text{ are short for } \frac{\partial \mathbf{x}}{\partial u} \text{ and } \frac{\partial \mathbf{x}}{\partial v})$

u-curve and v-curve

Consider the curves on M obtained by fixing $v = v_0$ and varying u, it is called a u-curve, and obtained by fixing $u = u_0$ and varying v, it is called a v-curve. At the point $p = \mathbf{x}(u_0, v_0)$, $\mathbf{x}_u(u_0, v_0)$ is tangent to the u-curve and $\mathbf{x}_v(u_0, v_0)$ is tangent to the v-curve.

The tangent plane of a surface is defined following that of general manifold, in parametrized surfaces, it can be defined concretely.

Definition

Let M be a regular parametrized surface, and let $p \in M$. Then choose a regular parametrization $\mathbf{x}: U \to M \subset \mathbb{R}^3$ with $p = \mathbf{x}(u_0, v_0)$. We define the tangent plane of M at p to be the subspace T_pM spanned by \mathbf{x}_u and \mathbf{x}_v evaluated at (u_0, v_0) .

Example

- ▶ Graph of a function $f: U \to \mathbb{R}$, z = f(x, y), is parametrized by $\mathbf{x}(u, v) = (u, v, f(u, v))$. Note that $\mathbf{x}_u \times \mathbf{x}_v = (-f_u, -f_v, 1) \neq \mathbf{0}$, so this is always a regular parametrization.
- ▶ The helicoid is the surface formed by drawing horizontal rays from the axis of the helix $\alpha(t) = (\cos t, \sin t, bt)$ to points on the helix:

$$\mathbf{x}(u, v) = (u \cos v, u \sin v, bv), \quad u > 0, v \in \mathbb{R}.$$

Definition (First fundamental form)

In a parametrization of a surface $M \subset \mathbb{R}^3$, the first fundamental form, is defined as $I_p(\mathbf{u}, \mathbf{v}) = \mathbf{u} \cdot \mathbf{v}$, for $\mathbf{u}, \mathbf{v} \in T_pM$. Take $\{\mathbf{x}_u, \mathbf{x}_v\}$ as a natural basis, we also define

$$E = I_p(\mathbf{x}_u, \mathbf{x}_v) = \mathbf{x}_u \cdot \mathbf{x}_v \tag{1}$$

$$F = I_p(\mathbf{x}_u, \mathbf{x}_v) = \mathbf{x}_u \cdot \mathbf{x}_v = \mathbf{x}_v \cdot \mathbf{x}_u = I_p(\mathbf{v}_v, \mathbf{x}_u)$$
 (2)

$$G = I_p(\mathbf{x}_v, \mathbf{x}_u) = \mathbf{x}_v \cdot \mathbf{x}_v \tag{3}$$

Often it is convenient to write it as entries of a symmetric matrix

$$I_p = \left[\begin{array}{cc} E & F \\ F & G \end{array} \right]$$

Length of tangent vectors

Then given tangent vectors $\mathbf{u} = a\mathbf{x}_u + b\mathbf{x}_v$ and $\mathbf{v} = c\mathbf{x}_u + d\mathbf{x}_v \in T_pM$, we have

$$\mathbf{u} \cdot \mathbf{v} = I_p(\mathbf{u}, \mathbf{v}) = (a\mathbf{x}_u + b\mathbf{x}_v) \cdot (c\mathbf{x}_u + d\mathbf{x}_v) = E(ac) + F(ad + bc) + G(bd).$$

in particular, the length of \mathbf{u} , $\|\mathbf{u}\|^2 = I_p(\mathbf{u}, \mathbf{u}) = Ea^2 + 2Fab + Gb^2$.

I_p is an invariant

Let M and M' are surfaces. We say they are locally isometric if for each $p \in M$ there are a regular parametrization $\mathbf{x}: U \to M$ with $\mathbf{x}(u_0, v_0) = p$ and a regular parametrization $\mathbf{x}^*: U \to M^*$ (using the same domain U) with the property that $I_p = I_p^*$ whenever $p = \mathbf{x}(u, v)$ and $p^* = \mathbf{x}^*(u, v)$ for some $(u, v) \in U$.

I_n encodes surface area

The infinitesimal area of the parallelepiped spanned by $\mathbf{x}_u, \mathbf{x}_v$ is $\|\mathbf{x}_u \times \mathbf{x}_v\|$ (?), and the surface area over U can be computed by

$$\int_{U} \|\mathbf{x}_{u} \times \mathbf{x}_{v}\| \, du dv = \int_{U} \sqrt{EG - F^{2}} du dv.$$

The Gauss map and the second fundamental form

Given a regular parametrized surface M, the function $\mathbf{n}: M \to \Sigma$ that assigns to each point $P \in M$ the unit normal $\mathbf{n}(P)$, is called the *Gauss map* of M.

Example

- ▶ On a plane, the tangent plane never changes, so the Gauss map is a constant.
- ▶ On a cylinder, the tangent plane is constant along the rulings, so the Gauss map sends the entire surface to an equator of the sphere.
- ▶ On sphere centered at the origin, the Gauss map is merely the position vector.

Intuitively, the information of the shape of M at certain point P is encoded in the curvature at P of various curves in M. We consider the normal slices of M, that is, we slice M with the plane through P spanned by $\mathbf{n}(P)$ and a unit vector $\mathbf{V} \in T_P M$.

Let α be the arclength parametrized curve obtained by taking such a normal slice. We have $\alpha(0) = P$ and $\alpha'(0) = \mathbf{V}$. Obviously by definition of the slice, the curve lies in the plane spanned by $\mathbf{n}(P)$ and \mathbf{V} , the principal normal of the curve at P must be $\mathbf{n}(P)$. Since $(\mathbf{n} \circ \alpha(s)) \cdot \mathbf{T}(s) = 0$, we have that

$$\kappa(P) = \kappa \mathbf{N} \cdot \mathbf{n}(P) = \mathbf{T}'(0) \cdot \mathbf{n}(P) = -\mathbf{T}'(0) \cdot (\mathbf{n} \circ \boldsymbol{\alpha})'(0) = -D_{\mathbf{V}} \mathbf{n}(P) \cdot \mathbf{V},$$

where the second = comes from Frenet formula. A careful study of $D_{\mathbf{V}}\mathbf{n}(P)$ gives the following result.

Proposition

For any $\mathbf{V} \in T_P M$, the directional derivative $D_{\mathbf{V}} \mathbf{n}(P) \in T_P M$. Moreover, the linear map $S_P : T_P M \to T_P M$ defined by

$$S_P(\mathbf{V}) = -D_{\mathbf{V}}\mathbf{n}(P)$$

is a symmetric linear map, i.e., for any $\mathbf{U}, \mathbf{V} \in T_P M$, we have

$$S_P(\mathbf{U}) \cdot \mathbf{V} = \mathbf{U} \cdot S_P(\mathbf{V})$$

 S_P is called the shape operator at P.

The second fundamental form is defined as follows. If $\mathbf{U}, \mathbf{V} \in T_P M$, we set

$$II_P(\mathbf{U}, \mathbf{V}) = S_P(\mathbf{U}) \cdot \mathbf{V}.$$

Covariant Derivative, Parallel transport, Geodesics

Definition

Let X be a differentiable vector field in an open set $U \subset M$ and $p \in U$. Let $\mathbf{y} \in T_pM$. Consider a parametrized curve

$$\alpha: (-\epsilon, \epsilon) \to U,$$

with $\alpha(0) = p$ and $\alpha'(0) = \mathbf{y}$, and let X(t), $t \in (-\epsilon, \epsilon)$, be the restriction of the vector field X to the curve α . The vector obtained by the normal projection of $\frac{dX}{dt}(0)$ onto the plane T_pM is called the covariant derivative at p of the vector field X relative to the vector \mathbf{y} . This covariant derivative is denoted by

$$\nabla_{\mathbf{y}}X(p) = \frac{dX}{dt} - (\frac{dX}{dt} \cdot \mathbf{n})\mathbf{n}.$$

Definition

A vector field X along a parametrized curve $\alpha: I \to M$ is saied to be parallel if $\nabla_{\alpha'} X = 0$ for all points in I.

Motivations

- ▶ Intuitively, in \mathbb{R}^3 , two vectors \mathbf{v} (starting from p) and \mathbf{w} (starting from q) are parallel provided that we obtain \mathbf{w} when we move \mathbf{v} "parallel to itself" from p to q, i.e., if $\mathbf{w} = \mathbf{v}$.
- ▶ On a surface, how should we compare a tangent vector at one point of the surface to a tangent vector at another and determine if they are "parallel"?

Proposition

Let I be an interval in \mathbb{R} with $0 \in I$. Given a curve $\alpha : I \to M$ with $\alpha(0) = p$ and $X_0 \in T_pM$, there is a unique parallel vector field X defined along α with $X(p) = X_0$.

Given a curve and a tangent vector on the curve, there exists a unique way to move the vector along the curve in the sense of parallelism. And we can have the following notion of comparing two tangent vectors on a surface at different tangent spaces.

Definition

If α is a path from p to q, we refer to X(q) as the parallel translate of $X(p) = X_0 \in T_pM$ along α .

Definition

We say a parametrized curve in a surface M is a geodesic if its tangent vector is parallel along the curve, i.e., $\nabla_{\alpha'}\alpha' = 0$.

Proposition

Given a point $p \in M$ and $\mathbf{v} \in T_pM$, there exists $\epsilon > 0$ and a unique geodesic $\alpha : (-\epsilon, \epsilon) \to M$ with $\alpha(0) = p$ and $\alpha'(0) = \mathbf{v}$.

Equation of movement of a forceless particle.

- Suppose we are trying to solve the trajectory of a forceless particle in \mathbb{R}^3 according to Newton's law of inertial;
- ▶ The equation that we are solving is the following

$$\boldsymbol{\alpha}''(t) = 0$$

whose solution is $\alpha(t) = t(c_1, c_2, c_3)^{\top}$;

▶ Question: How to measure the accelerate physically?

▶ To "measure" the accelerate, we expect to know a velocity field along the trajectory, say $\alpha'(t)$, and compute the mean

$$\frac{\boldsymbol{\alpha}'(t+\Delta t)-\boldsymbol{\alpha}'(t)}{\Delta t}$$

- A hidden step: move $\alpha'(t + \Delta t)$ to the tangent space at $\alpha(t)$ before computing $\alpha'(t + \Delta t) \alpha'(t)$;
- ▶ To extend $\alpha'(t + \Delta t)$ locally to a vector $\mathbf{v}(p_1)$ on $\alpha(t)$ parallel to $\alpha'(t + \Delta t)$, we just need a well defined metric (first fundamental form) in $T_{\alpha(t+\Delta t)}\mathbb{R}^2$;
- ▶ The identification of different tangent spaces is a special feature of Euclidean geometry.

Since the covariant derivative (directional derivative) of a vector field X on a surface is defined to be

$$\nabla_{\mathbf{v}}X = (D_{\mathbf{v}}X)^{||} = D_{\mathbf{v}}X - (D_{\mathbf{v}}X \cdot \mathbf{n})\mathbf{n},$$

it is natural to talk about the change of X along a curve based on $\nabla_{\alpha'(t)}X(\alpha(t))$, recall that $\nabla_{\alpha'(t)}X(\alpha(t)) = \mathbf{0}$ is called *covariant constant* or *parallel*, which generalizes the parallelism in Euclidean space.

To prove that with a well defined covariant derivative, one can move a vector X along a curve $\alpha(t)$ such that $\nabla_{\alpha'(t)}X(\alpha(t)) = \mathbf{0}$, we need Christoffel symbols. Given a parametrized surface $\mathbf{x}: U \to M$, we have

$$\nabla_{\mathbf{x}_{u}}\mathbf{x}_{u} = (\mathbf{x}_{uu})^{||} = \Gamma_{uu}^{u}\mathbf{x}_{u} + \Gamma_{uu}^{v}\mathbf{x}_{v}$$

$$\nabla_{\mathbf{x}_{v}}\mathbf{x}_{u} = (\mathbf{x}_{uv})^{||} = \Gamma_{uv}^{u}\mathbf{x}_{u} + \Gamma_{uv}^{v}\mathbf{x}_{v} = \nabla_{\mathbf{x}_{u}}\mathbf{x}_{v}$$

$$\nabla_{\mathbf{x}_{v}}\mathbf{x}_{v} = (\mathbf{x}_{vv})^{||} = \Gamma_{vv}^{u}\mathbf{x}_{u} + \Gamma_{vv}^{v}\mathbf{x}_{v}.$$

 Γ are functions of (u, v).

Assuming α lies in a parametrized $\mathbf{x}: U \to M$, set $\alpha(t) = \mathbf{x}(u(t), v(t))$ and write

$$X(\boldsymbol{\alpha}(t)) = a(t)\mathbf{x}_u(u(t), v(t)) + b(t)\mathbf{x}_v(u(t), v(t)).$$

Then

$$\alpha'(t) = u'(t)\mathbf{x}_u + v'(t)\mathbf{x}_v.$$

So, by the product rule and chain rule, we have

$$\nabla_{\boldsymbol{\alpha}'(t)}X = \left((X \circ \boldsymbol{\alpha})'(t) \right)^{\parallel} = \left(\frac{d}{dt} \left(a(t) \mathbf{x}_u(u(t), v(t)) + b(t) \mathbf{x}_v(u(t), v(t)) \right)^{\parallel} \right)$$
$$= a'(t) \mathbf{x}_u + b'(t) \mathbf{x}_v + a(t) \left(\frac{d}{dt} \mathbf{x}_u(u(t), v(t)) \right)^{\parallel} + b(t) \left(\frac{d}{dt} \mathbf{x}_v(u(t), v(t)) \right)^{\parallel}$$

$$= a'(t)\mathbf{x}_{u} + b'(t)\mathbf{x}_{v} + a(t)\left(u'(t)\mathbf{x}_{uu} + v'(t)\mathbf{x}_{uv}\right)^{\parallel} + b(t)\left(u'(t)\mathbf{x}_{vu} + v'(t)\mathbf{x}_{vv}\right)^{\parallel}$$

$$= a'(t)\mathbf{x}_{u} + b'(t)\mathbf{x}_{v} + a(t)\left(u'(t)(\Gamma_{uu}^{u}\mathbf{x}_{u} + \Gamma_{vu}^{v}\mathbf{x}_{v}) + v'(t)(\Gamma_{uv}^{u})\mathbf{x}_{u} + \Gamma_{uv}^{v}\mathbf{x}_{v}\right)$$

$$+ b(t)\left(u'(t)(\Gamma_{vu}^{u}\mathbf{x}_{u} + \Gamma_{vu}^{v}\mathbf{x}_{v}) + v'(t)(\Gamma_{vv}^{u}\mathbf{x}_{u} + \Gamma_{vv}^{v}\mathbf{x}_{v})\right)$$

$$= \left(a'(t) + a(t)(\Gamma_{uu}^{u}u'(t) + \Gamma_{uv}^{u}v'(t)) + b(t)(\Gamma_{vu}^{u}u'(t) + \Gamma_{vv}^{u}v'(t))\right)\mathbf{x}_{u}$$

$$+ \left(b'(t) + a(t)(\Gamma_{uu}^{v}u'(t) + \Gamma_{vv}^{v}v'(t)) + b(t)(\Gamma_{vu}^{v}u'(t) + \Gamma_{vv}^{v}v'(t))\right)\mathbf{x}_{v}$$

So to say X is parallel along the curve α is to say that a(t) and b(t) are solutions of the linear system of first order ODE

$$a'(t) + a(t)(\Gamma_{uu}^{u}u'(t) + \Gamma_{uv}^{u}v'(t)) + b(t)(\Gamma_{vu}^{u}u'(t) + \Gamma_{vv}^{u}v'(t)) = 0$$

$$b'(t) + a(t)(\Gamma_{vu}^{v}u'(t) + \Gamma_{vv}^{v}v'(t)) + b(t)(\Gamma_{vu}^{v}u'(t) + \Gamma_{vv}^{v}v'(t)) = 0$$

Fundamental theorem of ODE implies the existence and uniqueness of the solution.

Example

$$\mathbf{x}(u, v) = (\sin u \cos v, \sin u \sin v, \cos u), \quad 0 < u < \pi, 0 \le v \le 2\pi.$$

and the Christoffel symbols of sphere are

$$\begin{bmatrix} \Gamma_{uu}^u & \Gamma_{uv}^u & \Gamma_{vv}^u \\ \Gamma_{vu}^v & \Gamma_{uv}^v & \Gamma_{vv}^v \end{bmatrix} = \begin{bmatrix} 0 & 0 & -\sin u \cos u \\ 0 & \cot u & 0 \end{bmatrix}$$

Fix a latitude circle $u = u_0$ ($u_0 \neq 0, \pi$) on the unit sphere. Compute the parallel transport of the vector \mathbf{x}_v starting at the point p given by $u = u_0$, v = 0, once around the circle, counterclockwise. Parametrize the curve by $u(t) = u_0$, v(t) = t, $t \leq t \leq 2\pi$. Then the parallel transport equation in parameter space (u, v) is

$$a'(t) = \sin u_0 \cos u_0 b(t), \quad a(0) = 0$$

 $b'(t) = -\cot u_0 a(t), \quad b(0) = 1$

Geodesic in parameter space

The equation $\nabla_{\alpha'}\alpha'$ can be solved in parameters. Suppose the equation for the curve $\alpha(t) = \mathbf{x}(u(t), v(t))$ to be a geodesic. Since

$$X = \alpha'(t) = u'(t)\mathbf{x}_u + v'(t)\mathbf{x}_v$$

we have a(t) = u'(t) and b(t) = v'(t), and the resulting equations are

$$u''(t) + \Gamma_{uu}^{u}u'(t)^{2} + 2\Gamma_{uv}^{u}u'(t)v'(t) + \Gamma_{vv}^{u}v'(t)^{2} = 0$$

$$v''(t) + \Gamma_{uu}^{v}u'(t)^{2} + 2\Gamma_{uv}^{v}u'(t)v'(t) + \Gamma_{vv}^{v}v'(t)^{2} = 0$$

Again, fundamental theorem of ODE guarantees the existence and uniqueness of the curve $\boldsymbol{\alpha}: (-\epsilon, \epsilon) \to M$ with $\boldsymbol{\alpha}(0) = p$ and $\boldsymbol{\alpha}'(0) = \mathbf{v}$ and satisfying $\nabla_{\boldsymbol{\alpha}'(t)} \boldsymbol{\alpha}'(t) = 0$ for all $t \in (-\epsilon, \epsilon)$.

Example

▶ Let $\mathbf{x}(u, v) = (u, v)$ be a parametrization of the plane. Then all the Christoffel symbols vanish and the geodesics are the solutions of

$$u''(t) = v''(t) = 0.$$

Gauss-Bonnet Theorem

Definition

Let α be a closed curve in a surface M. The angle through which a vector turns relative to the given framing as we parallel translate it once around the curve α is called the holonomy around α

We will work in an orthogonal parametrization and define a framing by setting

$$\mathbf{e}_1 = \frac{\mathbf{x}_u}{\sqrt{E}}$$
 and $\mathbf{e}_2 = \frac{\mathbf{x}_v}{\sqrt{G}}$.

Since \mathbf{e}_1 and \mathbf{e}_2 give an orthonormal basis for the tangent space, all the intrinsic curvature information is encapsulated in knowing how \mathbf{e}_1 twists towards \mathbf{e}_2 as we move around the surface. In particular, if

$$\alpha(t) = \mathbf{x}(u(t), v(t)), \quad a \le t \le b,$$

we can set the infinitesimal change of angle

$$\phi_{12}(t) = \frac{d}{dt} \left(\mathbf{e}_1(u(t), v(t)) \right) \cdot \mathbf{e}_2(u(t), v(t)).$$

Or we can also write

$$\phi_{12} = \nabla_{\boldsymbol{\alpha}'} \mathbf{e}_1 \cdot \mathbf{e}_2.$$

The explicit formula for ϕ_{12} can be derived as follows.

Proposition

In an orthogonal parametrization with e_1 and e_2 , we have

$$\phi_{12} = \frac{1}{2\sqrt{EG}}(-E_v u' + G_u v').$$

Proof.

$$\phi_{12} = \frac{d}{dt} \left(\frac{\mathbf{x}_u}{\sqrt{E}} \right) \cdot \frac{\mathbf{x}_v}{\sqrt{G}} = \frac{1}{\sqrt{EG}} (\mathbf{x}_{uu} u' + \mathbf{x}_{uv} v') \cdot \mathbf{x}_v$$

Since the term that arise from differentiating \sqrt{E} will involve $\mathbf{x}_u \cdot \mathbf{x}_v = 0$, the result holds.

Proposition

The holonomy around the closed curve C equals $\Delta \psi = -\int_a^b \phi_{12}(t) dt$.

Proof.

Suppose that α is a closed curve and we are investigating the holonomy around α . If e_1 happens to be parallel along α , then the holonomy will be 0. If not, consider X(t) to be the parallel translation of \mathbf{e}_1 along $\alpha(t)$ and write

$$X(t) = \cos \psi(t)\mathbf{e}_1 + \sin \psi(t)\mathbf{e}_2$$

Then X is parallel along α if and only if

$$\mathbf{0} = \nabla_{\alpha'} X = \nabla_{\alpha'} (\cos \psi \mathbf{e}_1 + \sin \psi \mathbf{e}_2) = (\phi_{12} + \psi') (-\sin \psi \mathbf{e}_1 + \cos \psi \mathbf{e}_2).$$

Thus X is parallel if and only if $\psi'(t) = -\phi_{12}(t)$. And therefore, we have

$$\Delta \psi = -\int_a^b \phi_{12}(t)dt.$$

Suppose now that α is an arclength-parametrized curve and write

$$\alpha(s) = \mathbf{x}(u(s), v(s))$$

and

$$\mathbf{T}(s) = \boldsymbol{\alpha}'(s) = \cos \theta(s)\mathbf{e}_1 + \sin \theta(s)\mathbf{e}_2.$$

We have the following

Proposition

When α is an arclength-parametrized curve, the geodesic curvature of α is given by

$$\kappa_g(s) = \phi_{12}(s) + \theta'(s)$$

Corollary

When R is a region with smooth boundary and lying in an orthogonal parametrization, the holonomy around ∂R is $\Delta \psi = \int_R K dA$.

Proof.

$$\int_{0}^{L} \phi_{12}(s)ds = \int_{0}^{L} \frac{1}{2\sqrt{EG}} \left(-E_{v}u'(s) + G_{u}v'(s) \right) ds = \int_{\partial R} \frac{1}{2\sqrt{EG}} \left(-E_{v}du + G_{u}dv \right)$$

$$= \iint_{R} \left(\left(\frac{E_{v}}{2\sqrt{EG}} \right)_{v} + \left(\frac{G_{u}}{2\sqrt{EG}} \right)_{u} \right) du dv$$

$$= \iint_{R} \frac{1}{2\sqrt{EG}} \left(\left(\frac{E_{v}}{\sqrt{EG}} \right)_{v} + \left(\frac{G_{u}}{\sqrt{EG}} \right)_{u} \right) \underbrace{\sqrt{EG} du dv}_{dA}$$

$$= -\iint_{R} K dA$$

Note that

$$\int_{\partial R} \kappa_g ds = \int_{\partial R} \phi_{12} ds + \theta(L) - \theta(0)$$

so the total angle through which the tangent vector to ∂R turns is given by

$$\Delta\theta = \int_{\partial R} \kappa_g ds + \int_R K dA.$$

In particular, when R is simply connected, $\Delta \theta = 2\pi$.

Theorem (Local Gauss-Bonnet)

Suppose R is a simply connected region with piecewise smooth boundary and lying in an orthogonal parametrization. If $C = \partial R$ has exterior angles $\epsilon_j, j = 1, ..., \ell$, then

$$\int_{\partial R} \kappa_g ds + \int_R K dA + \sum_{i=1}^{\ell} \epsilon_i = 2\pi.$$

Questions?

