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Curves

Definition
We say a vector function f : (a, b)→ R3 is Ck if f and its first k derivatives, f ′, f ′′,
... fk, exists and are all continuous. A parametrized curve is a C3 map α : I → R3

for some interval I = (a, b) or [a, b]. We say α is regular if α′(t) 6= 0 for all t ∈ I.

I The velocity of the curve (imagine some particle moving along α) is

α′(t) =
dα

dt
= lim

h→0

α(t+ h)−α(t)

h

I The velocity vector α′(t) is tangent to the curve at α(t) and its length
‖α′(t)‖ is the speed of the curve.



The distance a particle travels is the integral of its speed,

Proposition

Let α : [a, b]→ R3 be a piecewise C1 parametrized curve. Then

length(α) =

∫ b

a

∥∥α′(t)∥∥ dt.
Define s(t) to be the arclength of the curve α on the interval [a, t]. If α′(t) = 1 for
all t ∈ [a, b], then s(t) = t− a. We say the curve α is parametrized by arclength if
s(t) = t for all t.



Existence of arclength parametriziation

Suppose α is a regular curve, i.e., ‖α′(t)‖ > 0 for all t, then the arclength function
s(t) =

∫ t
a ‖α

′(u)du‖ is an increasing function (since s′(t) = ‖α′(t)‖ > 0), and
therefore has a differentiable inverse function t = t(s). Then the parametrization

β(s) = α(t(s))

is parametrization by arclength. (Ex. verify)

Example

Consider the helix α(t) = (a cos t, a sin t, bt). Calculate α′(t), ‖α′(t)‖ , and
reparametrize α by arc-length.



α′(t) = (−a sin t, a cos t, b)∥∥α′(t)∥∥ =
√
a2 + b2

The arclength formula

s(t) =

∫ t

0

∥∥α′(u)
∥∥ du =

∫ t

0

√
a2 + b2du =

√
a2 + b2t

gives the inverse function

t(s) =
1√

a2 + b2
s

Therefore, the reparametrization by s is

β(s) = α(t(s)) = (a cos
1√

a2 + b2
s, a sin

1√
a2 + b2

s,
b√

a2 + b2
s).



Local Theory: Frenet Frame
The following result is from vector calculus.

Lemma
Suppose f ,g : (a, b)→ R3 are differentiable and satisfy f(t) · g(t) = const for all t.
Then f ′(t) · g(t) = −f(t) · g′(t). In particular ‖f(t)‖ = const if and only if
f(t) · f ′(t) = 0 for all t.

Using this lemma repeatedly, we can construct the Frenet frame of suitable regular
curves.

I We assume throughout that the curve α is parametrized by arclength. Then
α′(s) is the unit tangent vector to the curve, which we denote by T(s).

I Since T(s) has constant length, T(s) will be orthogonal to T(s).

I Assuming T′(s) 6= 0, define the principal normal vector N(s) = T′(s)
‖T′(s)‖ and the

curvature κ(s) = ‖T′(s)‖ , and we have

T′(s) = κ(s)N(s).

I If κ 6= 0, define the binormal vector B(s) = T(s)×N(s).



Then {T(s),N(s),B(s)} form a right-handed orthonormal basis for R3. N′(s)
must be a linear combination of T(s),N(s) and B(s). Suppose there exist a(s), bs
and c(s) such that

N′(s) = a(s)T(s) + b(s)N(s) + c(s)B(s)

note that
N′(s) ·N(s) = b(s) ‖N(s)‖ 2 = b(s) = 0.

N′(s) ·T(s) = a(s) = −T′(s)N(s) = −κ(s)N(s) ·N(s) = −κ(s)

The component coefficient c(s) is called the torsion (denoted τ(s)) of the curve and
can be computed from

τ(s) = N′(s) ·B(s),

and this gives the linear expansion of N′(s):

N′(s) = −κ(s)T(s) + τ(s)B(s).



Similarly, B′(s) must be a linear combination of T(s), N(s) and B(s), we can
assume

B′(s) = a(s)T(s) + b(s)N(s) + c(s)B(s).

Apparently,

B′(s) ·T(s) = −T′(s) ·B(s) = κ(s)N(s) ·B(s) = 0 = a(s).

And
b(s) = B′(s) ·N(s) = −N′(s) ·B(s) = −τ(s)

In the end, c(s) can be computed from

B′(s) ·B(s) = c(s) = 0,

and we have
B′(s) = −τ(s)N(s)



In summary, the Frenet formulas of a curve is given by

T′(s) = κ(s)N(s)
N′(s) = −κ(s)T(s) +τ(s)B(s)
B′(s) = −τ(s)N(s)



Surfaces

Parametrized surfaces

I Let U be an open set in R2. A function f : U → Rm is called C1 if f and its
partial derivatives ∂f

∂u and ∂f
∂v are all continuous.

I We will use (u, v) as coordinates in parameter space, and (x, y, z) as
coordinates in R3.

I If f is C2, then ∂2f
∂u∂v = ∂2f

∂v∂u .

I A regular parametrization of a subset M ⊂ R3 is a one-to-one function

x : U →M ⊂ R3, so that xu × xv 6= 0

for some open set U ⊂ R2. (xu and xv are short for ∂x
∂u and ∂x

∂v )



u-curve and v-curve
Consider the curves on M obtained by fixing v = v0 and varying u, it is called a
u-curve, and obtained by fixing u = u0 and varying v, it is called a v-curve. At the
point p = x(u0, v0), xu(u0, v0) is tangent to the u-curve and xv(u0, v0) is tangent to
the v-curve.



The tangent plane of a surface is defined following that of general manifold, in
parametrized surfaces, it can be defined concretely.

Definition
Let M be a regular parametrized surface, and let p ∈M . Then choose a regular
parametrization x : U →M ⊂ R3 with p = x(u0, v0). We define the tangent plane
of M at p to be the subspace TpM spanned by xu and xv evaluated at (u0, v0).

Example

I Graph of a function f : U → R, z = f(x, y), is parametrized by
x(u, v) = (u, v, f(u, v)). Note that xu × xv = (−fu,−fv, 1) 6= 0, so this is
always a regular parametrization.

I The helicoid is the surface formed by drawing horizontal rays from the axis of
the helix α(t) = (cos t, sin t, bt) to points on the helix:

x(u, v) = (u cos v, u sin v, bv), u > 0, v ∈ R.



Definition (First fundamental form)

In a parametrization of a surface M ⊂ R3, the first fundamental form, is defined as
Ip(u,v) = u · v, for u,v ∈ TpM . Take {xu,xv} as a natural basis, we also define

E = Ip(xu,xv) = xu · xv (1)

F = Ip(xu,xv) = xu · xv = xv · xu = Ip(vv,xu) (2)

G = Ip(xv,xu) = xv · xv (3)

Often it is convenient to write it as entries of a symmetric matrix

Ip =

[
E F
F G

]



Length of tangent vectors

Then given tangent vectors u = axu + bxv and v = cxu + dxv ∈ TpM , we have

u · v = Ip(u,v) = (axu + bxv) · (cxu + dxv) = E(ac) + F (ad+ bc) +G(bd).

in particular, the length of u, ‖u‖ 2 = Ip(u,u) = Ea2 + 2Fab+Gb2.

Ip is an invariant

Let M and M ′ are surfaces. We say they are locally isometric if for each p ∈M
there are a regular parametrization x : U →M with x(u0, v0) = p and a regular
parametrization x∗ : U →M∗ (using the same domain U) with the property that
Ip = I∗p whenever p = x(u, v) and p∗ = x∗(u, v) for some (u, v) ∈ U .



Ip encodes surface area

The infinitesimal area of the parallelepiped spanned by xu,xv is ‖xu × xv‖ (?),
and the surface area over U can be computed by∫

U
‖xu × xv‖ dudv =

∫
U

√
EG− F 2dudv.



The Gauss map and the second fundamental form

Given a regular parametrized surface M , the function n : M → Σ that assigns to
each point P ∈M the unit normal n(P ), is called the Gauss map of M .

Example

I On a plane, the tangent plane never changes, so the Gauss map is a constant.

I On a cylinder, the tangent plane is constant along the rulings, so the Gauss
map sends the entire surface to an equator of the sphere.

I Ona sphere centered at the origin, the Gauss map is merely the position
vector.



Intuitively, the information of the shape of M at certain point P is encoded in the
curvature at P of various curves in M . We consider the normal slices of M , that is,
we slice M with the plane through P spanned by n(P ) and a unit vector
V ∈ TPM .



Let α be the arclength parametrized curve obtained by taking such a normal slice.
We have α(0) = P and α′(0) = V. Obviously by definition of the slice, the curve
lies in the plane spanned by n(P ) and V, the principal normal of the curve at P
must be n(P ). Since (n ◦α(s)) ·T(s) = 0, we have that

κ(P ) = κN · n(P ) = T′(0) · n(P ) = −T′(0) · (n ◦α)′(0) = −DVn(P ) ·V,
where the second = comes from Frenet formula. A careful study of DVn(P ) gives
the following result.

Proposition

For any V ∈ TPM , the directional derivative DVn(P ) ∈ TPM . Moreover, the
linear map SP : TPM → TPM defined by

SP (V) = −DVn(P )

is a symmetric linear map, i.e., for any U,V ∈ TPM , we have

SP (U) ·V = U · SP (V)

SP is called the shape operator at P .



The second fundamental form is defined as follows. If U,V ∈ TPM , we set

IIP (U,V) = SP (U) ·V.



Covariant Derivative, Parallel transport, Geodesics

Definition
Let X be a differentiable vector field in an open set U ⊂M and p ∈ U . Let
y ∈ TpM . Consider a parametrized curve

α : (−ε, ε)→ U,

with α(0) = p and α′(0) = y, and let X(t), t ∈ (−ε, ε), be the restriction of the
vector field X to the curve α. The vector obtained by the normal projection of
dX
dt (0) onto the plane TpM is called the covariant derivative at p of the vector field
X relative to the vector y. This covariant derivative is denoted by

∇yX(p) =
dX

dt
− (

dX

dt
· n)n.



Definition
A vector field X along a parametrized curve α : I →M is saied to be parallel if
∇α′X = 0 for all points in I.

Motivations

I Intuitively, in R3, two vectors v (starting from p) and w (starting from q) are
parallel provided that we obtain w when we move v ”parallel to itself” from p
to q, i.e., if w = v.

I On a surface, how should we compare a tangent vector at one point of the
surface to a tangent vector at another and determine if they are “parallel”?



Proposition

Let I be an interval in R with 0 ∈ I. Given a curve α : I →M with α(0) = p and
X0 ∈ TpM , there is a unique parallel vector field X defined along α with
X(p) = X0.

Given a curve and a tangent vector on the curve, there exists a unique way to
move the vector along the curve in the sense of parallelism. And we can have the
following notion of comparing two tangent vectors on a surface at different tangent
spaces.

Definition
If α is a path from p to q, we refer to X(q) as the parallel translate of
X(p) = X0 ∈ TpM along α.



Definition
We say a parametrized curve in a surface M is a geodesic if its tangent vector is
parallel along the curve, i.e., ∇α′α′ = 0.

Proposition

Given a point p ∈M and v ∈ TpM , there exists ε > 0 and a unique geodesic
α : (−ε, ε)→M with α(0) = p and α′(0) = v.



Equation of movement of a forceless particle.

I Suppose we are trying to solve the trajectory of a forceless particle in R3

according to Newton’s law of inertial;

I The equation that we are solving is the following

α′′(t) = 0

whose solution is α(t) = t(c1, c2, c3)>;

I Question: How to measure the accelerate physically?



I To ”measure” the accelerate, we expect to know a velocity field along the
trajectory, say α′(t), and compute the mean

α′(t+ ∆t)−α′(t)

∆t



I α′(t+ ∆t) and α′(t) live in different tangent spaces of R2,
α′(t+ ∆t) ∈ Tα(t+∆t)R2 while α′(t) ∈ Tα(t)R2;

I A hidden step: move α′(t+ ∆t) to the tangent space at α(t) before
computing α′(t+ ∆t)−α′(t);

I To extend α′(t+ ∆t) locally to a vector v(p1) on α(t) parallel to α′(t+ ∆t),
we just need a well defined metric (first fundamental form) in Tα(t+∆t)R2;

I The identification of different tangent spaces is a special feature of Euclidean
geometry.



Since the covariant derivative (directional derivative) of a vector field X on a
surface is defined to be

∇vX = (DvX)|| = DvX − (DvX · n)n,

it is natural to talk about the change of X along a curve based on ∇α′(t)X(α(t)),
recall that ∇α′(t)X(α(t)) = 0 is called covariant constant or parallel, which
generalizes the parallelism in Euclidean space.



To prove that with a well defined covariant derivative, one can move a vector X
along a curve α(t) such that ∇α′(t)X(α(t)) = 0, we need Christoffel symbols.
Given a parametrized surface x : U →M , we have

∇xuxu = (xuu)|| = Γu
uuxu + Γv

uuxv

∇xvxu = (xuv)|| = Γu
uvxu + Γv

uvxv = ∇xuxv

∇xvxv = (xvv)|| = Γu
vvxu + Γv

vvxv.

Γ··· are functions of (u, v).



Assuming α lies in a parametrized x : U →M , set α(t) = x(u(t), v(t)) and write

X(α(t)) = a(t)xu(u(t), v(t)) + b(t)xv(u(t), v(t)).

Then
α′(t) = u′(t)xu + v′(t)xv.

So, by the product rule and chain rule, we have

∇α′(t)X =
(
(X ◦α)′(t)

)||
=

(
d

dt
(a(t)xu(u(t), v(t)) + b(t)xv(u(t), v(t)))

)||
= a′(t)xu + b′(t)xv + a(t)

(
d

dt
xu(u(t), v(t))

)||
+ b(t)

(
d

dt
xv(u(t), v(t))

)||



= a′(t)xu + b′(t)xv + a(t)
(
u′(t)xuu + v′(t)xuv

)||
+ b(t)

(
u′(t)xvu + v′(t)xvv

)||
= a′(t)xu + b′(t)xv + a(t)

(
u′(t)(Γu

uuxu + Γv
uuxv) + v′(t)(Γu

uv)xu + Γv
uvxv

)
+ b(t)

(
u′(t)(Γu

vuxu + Γv
vuxv) + v′(t)(Γu

vvxu + Γv
vvxv)

)
=
(
a′(t) + a(t)(Γu

uuu
′(t) + Γu

uvv
′(t)) + b(t)(Γu

vuu
′(t) + Γu

vvv
′(t))

)
xu

+
(
b′(t) + a(t)(Γv

uuu
′(t) + Γv

uvv
′(t)) + b(t)(Γv

vuu
′(t) + Γv

vvv
′(t))

)
xv

So to say X is parallel along the curve α is to say that a(t) and b(t) are solutions
of the linear system of first order ODE

a′(t) + a(t)(Γu
uuu
′(t) + Γu

uvv
′(t)) + b(t)(Γu

vuu
′(t) + Γu

vvv
′(t)) = 0

b′(t) + a(t)(Γv
uuu
′(t) + Γv

uvv
′(t)) + b(t)(Γv

vuu
′(t) + Γv

vvv
′(t)) = 0

Fundamental theorem of ODE implies the existence and uniqueness of the solution.



Example

x(u, v) = (sinu cos v, sinu sin v, cosu), 0 < u < π, 0 ≤ v ≤ 2π.

and the Christoffel symbols of sphere are[
Γu
uu Γu

uv Γu
vv

Γv
uu Γv

uv Γv
vv

]
=

[
0 0 − sinu cosu
0 cotu 0

]
Fix a latitude circle u = u0 (u0 6= 0, π) on the unit sphere. Compute the parallel
transport of the vector xv starting at the point p given by u = u0, v = 0, once
around the circle, counterclockwise. Parametrize the curve by u(t) = u0, v(t) = t,
t ≤ t ≤ 2π. Then the parallel transport equation in parameter space (u, v) is

a′(t) = sinu0 cosu0b(t), a(0) = 0

b′(t) = − cotu0a(t), b(0) = 1



Geodesic in parameter space

The equation ∇α′α′ can be solved in parameters. Suppose the equation for the
curve α(t) = x(u(t), v(t)) to be a geodesic. Since

X = α′(t) = u′(t)xu + v′(t)xv

we have a(t) = u′(t) and b(t) = v′(t), and the resulting equations are

u′′(t) + Γu
uuu
′(t)2 + 2Γu

uvu
′(t)v′(t) + Γu

vvv
′(t)2 = 0

v′′(t) + Γv
uuu
′(t)2 + 2Γv

uvu
′(t)v′(t) + Γv

vvv
′(t)2 = 0

Again, fundamental theorem of ODE guarantees the existence and uniqueness of
the curve α : (−ε, ε)→M with α(0) = p and α′(0) = v and satisfying
∇α′(t)α

′(t) = 0 for all t ∈ (−ε, ε).



Example

I Let x(u, v) = (u, v) be a parametrization of the plane. Then all the Christoffel
symbols vanish and the geodesics are the solutions of

u′′(t) = v′′(t) = 0.



Gauss-Bonnet Theorem

Definition
Let α be a closed curve in a surface M . The angle through which a vector turns
relative to the given framing as we parallel translate it once around the curve α is
called the holonomy around α

We will work in an orthogonal parametrization and define a framing by setting

e1 =
xu√
E

and e2 =
xv√
G
.

Since e1 and e2 give an orthonormal basis for the tangent space, all the intrinsic
curvature information is encapsulated in knowing how e1 twists towards e2 as we
move around the surface. In particular, if

α(t) = x(u(t), v(t)), a ≤ t ≤ b,

we can set the infinitesimal change of angle

φ12(t) =
d

dt
(e1(u(t), v(t))) · e2(u(t), v(t)).



Or we can also write
φ12 = ∇α′e1 · e2.

The explicit formula for φ12 can be derived as follows.

Proposition

In an orthogonal parametrization with e1 and e2, we have

φ12 =
1

2
√
EG

(−Evu
′ +Guv

′).

Proof.

φ12 =
d

dt

(
xu√
E

)
· xv√

G
=

1√
EG

(xuuu
′ + xuvv

′) · xv

Since the term that arise from differentiating
√
E will involve xu · xv = 0, the

result holds.



Proposition

The holonomy around the closed curve C equals ∆ψ = −
∫ b
a φ12(t)dt.

Proof.
Suppose that α is a closed curve and we are investigating the holonomy around α.
If e1 happens to be parallel along α, then the holonomy will be 0. If not, consider
X(t) to be the parallel translation of e1 along α(t) and write

X(t) = cosψ(t)e1 + sinψ(t)e2

Then X is parallel along α if and only if

0 = ∇α′X = ∇α′(cosψe1 + sinψe2) = (φ12 + ψ′)(− sinψe1 + cosψe2).

Thus X is parallel if and only if ψ′(t) = −φ12(t). And therefore, we have

∆ψ = −
∫ b

a
φ12(t)dt.



Suppose now that α is an arclength-parametrized curve and write

α(s) = x(u(s), v(s))

and
T(s) = α′(s) = cos θ(s)e1 + sin θ(s)e2.

We have the following

Proposition

When α is an arclength-parametrized curve, the geodesic curvature of α is given by

κg(s) = φ12(s) + θ′(s)



Corollary

When R is a region with smooth boundary and lying in an orthogonal
parametrization, the holonomy around ∂R is ∆ψ =

∫
RKdA.

Proof.



Note that ∫
∂R
κgds =

∫
∂R
φ12ds+ θ(L)− θ(0)

so the total angle through which the tangent vector to ∂R turns is given by

∆θ =

∫
∂R
κgds+

∫
R
KdA.

In particular, when R is simply connected, ∆θ = 2π.

Theorem (Local Gauss-Bonnet)

Suppose R is a simply connected region with piecewise smooth boundary and lying
in an orthogonal parametrization. If C = ∂R has exterior angles εj , j = 1, ..., `,
then ∫

∂R
κgds+

∫
R
KdA+

∑̀
j=1

εj = 2π.



Questions?


