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Curves

Definition

We say a vector function f : (a,b) — R3 is CF if f and its first & derivatives, f’, £,
... f¥_ exists and are all continuous. A parametrized curve is a C3 map a : I — R3
for some interval I = (a,b) or [a,b]. We say a is regular if o/(t) # 0 for all t € I.

» The velocity of the curve (imagine some particle moving along ) is

da lim a(t+h) — alt)

/ PR
o(t) = dt h—0 h

» The velocity vector /(t) is tangent to the curve at a(t) and its length
|&/(t)]| is the speed of the curve.




The distance a particle travels is the integral of its speed,

Proposition
Let a : [a,b] — R? be a piecewise C' parametrized curve. Then

b
length(a):/ |/ (2)| dt.

Define s(t) to be the arclength of the curve a on the interval [a,t]. If &/(t) =1 for
all t € [a,b], then s(t) =t — a. We say the curve a is parametrized by arclength if
s(t) =t for all ¢.




Existence of arclength parametriziation

Suppose « is a regular curve, i.e., ||@/(t)|| > 0 for all ¢, then the arclength function
s(t) = fcf ||/ (u)dul| is an increasing function (since s'(t) = ||&/(t)|| > 0), and
therefore has a differentiable inverse function t = ¢(s). Then the parametrization

B(s) = a(t(s))
is parametrization by arclength. (Ex. verify)

Example
Consider the helix a(t) = (acost,asint,bt). Calculate o/(t), ||&/(t)|, and
reparametrize o by arc-length.




a'(t) = (—asint,acost,b)
|/ (t)]] = Va2 + b2

The arclength formula

t ¢
:/ Ha’(u)”du:/ VaZ+bidu = +a? + b%t
0 0

gives the inverse function
1

t(s) = ———s
(5) va? + b2
Therefore, the reparametrization by s is

1 1 b
s) = a(t(s)) = (acos ——s, asin s,

s).




Local Theory: Frenet Frame

The following result is from vector calculus.

Lemma

Suppose f,g : (a,b) — R3 are differentiable and satisfy £(t) - g(t) = const for all t.
Then £'(t) - g(t) = —£(t) - g'(t). In particular ||f(t)|| = const if and only if
£(t)-f'(t) =0 for all t.

Using this lemma repeatedly, we can construct the Frenet frame of suitable regular
curves.

» We assume throughout that the curve a is parametrized by arclength. Then
a/(s) is the unit tangent vector to the curve, which we denote by T(s).

» Since T(s) has constant length, T(s) will be orthogonal to T(s).

» Assuming T'(s) # 0, define the principal normal vector N(s) = T'(s)

Py and the

curvature r(s) = ||T'(s)||, and we have

T'(s) = k(s)N(s).

» If k # 0, define the binormal vector B(s) = T(s) x N(s).



Then {T(s),N(s),B(s)} form a right-handed orthonormal basis for R3. N’(s)
must be a linear combination of T(s), N(s) and B(s). Suppose there exist a(s), bs
and c(s) such that

N'(s) = a(s)T(s) + b(s)N(s) + c(s)B(s)

note that
N'(s) - N(s) = b(s) [N(s) | 2 = b(s) = 0.
N'(s) - T(s) = a(s) = —T'(s)N(s) = —k(s)N(s) - N(s) = —x(s)

The component coefficient ¢(s) is called the torsion (denoted 7(s)) of the curve and
can be computed from

7(s) =N'(s) - B(s),

and this gives the linear expansion of N'(s):

N'(s) = —k(s)T(s) + 7(5)B(s).




Similarly, B’(s) must be a linear combination of T(s), N(s) and B(s), we can
assume

B'(s) = a(s)T(s) + b(s)N(s) + c(s)B(s).
Apparently,
B'(s) - T(s) = —T'(s) - B(s) = r(s)N(s) - B(s) = 0 = a(s).

And
b(s) = B/(s) - N(s) = —N'(s) - B(s) = —7(s)

In the end, ¢(s) can be computed from

and we have




In summary, the Frenet formulas of a curve is given by

T(s) = k(s)N(s)
N'(s) = —r(s)T(s) +7(s)B(s)
B'(s) = —7(s)N(s)




Surfaces

Parametrized surfaces

» Let U be an open set in R?. A function f : U — R™ is called C! if f and its

partial derivatives gi and 81f) are all continuous.

» We will use (u,v) as coordinates in parameter space, and (z,y, z) as
coordinates in R3.

2 0*f __ 93f
> If f is C<, then s = Dodu-

> A regular parametrization of a subset M C R3 is a one-to-one function

x:U—McCR? sothat x,xx,#0

for some open set U C R2. (x, and x, are short for % and g—’;)




u-curve and v-curve

Consider the curves on M obtained by fixing v = vy and varying u, it is called a
u-curve, and obtained by fixing u = ug and varying v, it is called a v-curve. At the
point p = x(ug, vo), Xy (uo,vo) is tangent to the u-curve and x,(ugp, vp) is tangent to
the v-curve.

X, X Xy

- \/

u




The tangent plane of a surface is defined following that of general manifold, in
parametrized surfaces, it can be defined concretely.

Definition

Let M be a regular parametrized surface, and let p € M. Then choose a regular
parametrization x : U — M C R? with p = x(ug,vg). We define the tangent plane
of M at p to be the subspace T, M spanned by x,, and x, evaluated at (ug, vo).

Example
» Graph of a function f: U — R, z = f(z,y), is parametrized by
x(u,v) = (u,v, f(u,v)). Note that x,, X x, = (= fu, —fv, 1) # 0, so this is
always a regular parametrization.

» The helicoid is the surface formed by drawing horizontal rays from the axis of
the helix a(t) = (cost,sint,bt) to points on the helix:

x(u,v) = (ucosv,usinv,bv), u>0,v € R.




Definition (First fundamental form)

In a parametrization of a surface M C R?, the first fundamental form, is defined as
I,(u,v) =u-v, for u,v e T,M. Take {x,,x,} as a natural basis, we also define

E = I)(Xy,Xy) = Xy - Xy (1)
F = I,(Xy, Xy) = Xy - Xy = Xy - Xy = Ip(Vy, Xy) (2)
G = Ip(Xy, Xy) = Xy - Xy (3)

Often it is convenient to write it as entries of a symmetric matrix

i




Length of tangent vectors
Then given tangent vectors u = ax, + bx, and v = cx, + dx, € T, M, we have

u-v=1I,(u,v) = (ax,+ bx,) - (cx, + dx,) = E(ac) + F(ad + bc) + G(bd).
in particular, the length of u, ||[u||? = I,(u,u) = Ea? + 2Fab + Gb>.

I,, is an invariant

Let M and M’ are surfaces. We say they are locally isometric if for each p € M
there are a regular parametrization x : U — M with x(ug,vg) = p and a regular
parametrization x* : U — M™* (using the same domain U) with the property that
I, = I; whenever p = x(u,v) and p* = x*(u, v) for some (u,v) € U.




I,, encodes surface area

The infinitesimal area of the parallelepiped spanned by X, X, is ||x, X X, (7),
and the surface area over U can be computed by

/ | X0 X Xyl dudv = / VEG — F%dudv.
U U




The Gauss map and the second fundamental form

Given a regular parametrized surface M, the function n : M — X that assigns to
each point P € M the unit normal n(P), is called the Gauss map of M.
Example

» On a plane, the tangent plane never changes, so the Gauss map is a constant.

» On a cylinder, the tangent plane is constant along the rulings, so the Gauss
map sends the entire surface to an equator of the sphere.

» Ona sphere centered at the origin, the Gauss map is merely the position
vector.




Intuitively, the information of the shape of M at certain point P is encoded in the
curvature at P of various curves in M. We consider the normal slices of M, that is,
we slice M with the plane through P spanned by n(P) and a unit vector
VeTlpM.
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Let a be the arclength parametrized curve obtained by taking such a normal slice.
We have a(0) = P and &/(0) = V. Obviously by definition of the slice, the curve
lies in the plane spanned by n(P) and V, the principal normal of the curve at P
must be n(P). Since (no a(s)) - T(s) =0, we have that

k(P) = kN -n(P) =T'(0) -n(P) = -T'(0) - (no a)’(0) = —Dyn(P) -V,

where the second = comes from Frenet formula. A careful study of Dyn(P) gives
the following result.

Proposition
For any V € TpM, the directional derivative Dyn(P) € TpM. Moreover, the
linear map Sp : TpM — TpM defined by

Sp(V) = —Dvyn(P)
s a symmetric linear map, i.e., for any U,V € TpM , we have
Sp(U)-V=U-5p(V)

Sp is called the shape operator at P.




The second fundamental form is defined as follows. If U,V € TpM, we set

IIp(U, V) = Sp(U) - V.




Covariant Derivative, Parallel transport, Geodesics

Definition
Let X be a differentiable vector field in an open set U C M and p € U. Let
y € T,M. Consider a parametrized curve

a:(—ee€) = U,

with a(0) = p and &/(0) =y, and let X (t), t € (—¢, €), be the restriction of the

vector field X to the curve . The vector obtained by the normal projection of
dd—)t((()) onto the plane T,,M is called the covariant derivative at p of the vector field

X relative to the vector y. This covariant derivative is denoted by

CdXdX

VyX(p) = T (E n)n.




Definition
A vector field X along a parametrized curve « : I — M is saied to be parallel if
Vo X =0 for all points in 1.

Motivations
» Intuitively, in R, two vectors v (starting from p) and w (starting from ¢) are
parallel provided that we obtain w when we move v ”parallel to itself” from p
to ¢, i.e., if w=v.
» On a surface, how should we compare a tangent vector at one point of the
surface to a tangent vector at another and determine if they are “parallel”?




Proposition

Let I be an interval in R with 0 € I. Given a curve o : I — M with a(0) = p and
Xo € T, M, there is a unique parallel vector field X defined along o with

X(p) = Xo.

Given a curve and a tangent vector on the curve, there exists a unique way to
move the vector along the curve in the sense of parallelism. And we can have the
following notion of comparing two tangent vectors on a surface at different tangent
spaces.

Definition
If a is a path from p to g, we refer to X (q) as the parallel translate of
X(p) = Xo € TyM along a.




Definition
We say a parametrized curve in a surface M is a geodesic if its tangent vector is
parallel along the curve, i.e., Vo' = 0.

Proposition
Given a point p € M and v € T,M, there exists € > 0 and a unique geodesic
a:(—e€) = M with a(0) = p and &/ (0) = v.




Equation of movement of a forceless particle.

» Suppose we are trying to solve the trajectory of a forceless particle in R?
according to Newton’s law of inertial;

» The equation that we are solving is the following
a’(t)=0

whose solution is a(t) = t(c1, ¢, ¢3)";

> Question: How to measure the accelerate physically?




» To "measure” the accelerate, we expect to know a velocity field along the
trajectory, say o'(t), and compute the mean

o/ (t+ At) — ()
At




o' (t + At) and /() live in different tangent spaces of R?,

o (t + At) € TyranR? while o (t) € Ty R

A hidden step: move o'(t + At) to the tangent space at a(t) before
computing o/ (t + At) — o/ (t);

To extend o' (t + At) locally to a vector v(p;) on «a(t) parallel to o/(t + At),
we just need a well defined metric (first fundamental form) in Tt At)]R2;

The identification of different tangent spaces is a special feature of Euclidean
geometry.




Since the covariant derivative (directional derivative) of a vector field X on a
surface is defined to be

VoX = (DyX)Il = DyX — (DyX -n)n,

it is natural to talk about the change of X along a curve based on Vo X (a(t)),
recall that V() X (a(t)) = 0 is called covariant constant or parallel, which
generalizes the parallelism in Euclidean space.




To prove that with a well defined covariant derivative, one can move a vector X
along a curve a(t) such that Vo X (a(t)) = 0, we need Christoffel symbols.
Given a parametrized surface x : U — M, we have

quxu = (qu)H = quxu + FZUX”U

Vi Xy = (XW)H =T %y + I'hyXy = Vi, Xy

Vi, Xy = (xm,)H =T xy + Tyxy.

.. are functions of (u,v).




Assuming o lies in a parametrized x : U — M, set a(t) = x(u(t),v(t)) and write
X(a(t)) = a(t)xu(u(t), v(t)) + b(t)xy (u(t), v(t)).

Then
o (t) = v (t)xy + V' (t)xy.

So, by the product rule and chain rule, we have

d

I
Ve X = (X 00 (0) = ( § (0Ru(0)0(0) + 60 u(0). (1))

u |
— a0 + V(B + alt) (jtxu(u(t), v(t))) T b(1) <jtxv(u(t), v(t)))




a (£)%y + U (£)% + a(t) (0 ()% + 0 (8) %) |+ b(E) (0 (£) X0 + 0/ (£) X0
a'(

()% + V(00 + at) (o (1)(Tx0 + Thyx,) + 0/ (1) (T, %, + Tl x,)
(1) (u/ (6)(T2 0 + TUx0) + 0 ()T, + Thux,)

— (a/(t) + alt) (T (t) + Dy’ (£)) + b(E) (T (8) + T2 (1)) x4

+ ((8) + alt) (T, (1) + Thy! (1)) + b(E) (T (£) + T, (1)) X,

+

So to say X is parallel along the curve a is to say that a(t) and b(t) are solutions
of the linear system of first order ODE

a' () + a(t)(Ty,u'(£) + Ty, () + b(6) (T, u'(8) + T,0'(8) = 0
b (t) + a(t) (T u' () + Ty v/ (1) + b(#) (T, u/(£) + Iy v'(t)) = 0

Fundamental theorem of ODE implies the existence and uniqueness of the solution.




Example

x(u,v) = (sinucosv,sinusinv,cosu), 0<u<m0<v<2r.
and the Christoffel symbols of sphere are

re, Tu  Tw ] _ [ 0 0 —sinucosu
re. U T 0 cotu 0

Fix a latitude circle u = ugy (ug # 0,7) on the unit sphere. Compute the parallel
transport of the vector x, starting at the point p given by u = ug, v = 0, once
around the circle, counterclockwise. Parametrize the curve by u(t) = ug, v(t) = t,
t <t < 2m. Then the parallel transport equation in parameter space (u,v) is

a'(t) = sinug cosupb(t), a(0) =0
b'(t) = — cot uga(t), b(0) =1




Geodesic in parameter space
The equation V4@’ can be solved in parameters. Suppose the equation for the
curve a(t) = x(u(t),v(t)) to be a geodesic. Since

X =/ (t) =u' (#)xy + V' (t)x,
we have a(t) = /(t) and b(t) = v/(t), and the resulting equations are

u(t) + Tiu/ (1) + 20,0/ ()0 () + Ty’ (1)* = 0
0" (t) + TUu/ (8)? + 28 o/ () (1) + T2, (1)* = 0
Again, fundamental theorem of ODE guarantees the existence and uniqueness of

the curve a : (—e¢,¢) - M with a(0) = p and /(0) = v and satisfying
V@ (t) =0 for all t € (—¢,¢).




Example

» Let x(u,v) = (u,v) be a parametrization of the plane. Then all the Christoffel
symbols vanish and the geodesics are the solutions of

u"(t) =" (t) = 0.




Gauss-Bonnet Theorem

Definition

Let a be a closed curve in a surface M. The angle through which a vector turns
relative to the given framing as we parallel translate it once around the curve a is
called the holonomy around a

We will work in an orthogonal parametrization and define a framing by setting
Xu X

VE VG

Since e; and ey give an orthonormal basis for the tangent space, all the intrinsic
curvature information is encapsulated in knowing how e; twists towards e, as we
move around the surface. In particular, if

a(t) =x(u(t),v(t)), a<t<b,

e = and ey =

we can set the infinitesimal change of angle

d

$12(t) = - (ex(u(t), v(?))) - e2(u(t), v()).




Or we can also write
¢12 = Vel - es.

The explicit formula for ¢12 can be derived as follows.

Proposition
In an orthogonal parametrization with e1 and eo, we have

1
= —Eau + Guv').
¢12 2@( u /U)
Proof.
_i Xy X, 1 , ,

Since the term that arise from differentiating v/E will involve x,, - x, = 0, the
result holds.




Proposition
The holonomy around the closed curve C' equals A = — fab P12(t)dt.

Proof.

Suppose that a is a closed curve and we are investigating the holonomy around o.
If e; happens to be parallel along a, then the holonomy will be 0. If not, consider
X (t) to be the parallel translation of e; along a(t) and write

X(t) = cos(t)er +siny(t)er
Then X is parallel along « if and only if
0 =VuX = Vu(costpe) + sintpey) = (¢p12 + ') (— sinpe; + coses).

Thus X is parallel if and only if ¢/(t) = —¢12(t). And therefore, we have

b
Ay = / P12(t)dt.




Suppose now that a is an arclength-parametrized curve and write

a(s) = x(u(s),v(s))

and
T(s) = a/(s) = cosf(s)e; + sinf(s)es.
We have the following

Proposition

When o« is an arclength-parametrized curve, the geodesic curvature of a is given by

kg(s) = ¢12(s) + 0/ (s)




Corollary

When R is a region with smooth boundary and lying in an orthogonal
parametrization, the holonomy around OR is Ay = fR KdA.

Proof.
L Loy / / .
/0 p12(s)ds = /0 W(—Evu () + Gu'(s))ds = /BR Z—TG(_E“du + Gy dv)

/f( Nﬁ NZ__G) )dudv
))Jﬁdudv

=//1e2m( Jlfz_a)+(dﬁ

—/ KdA
R




Note that

/ Kgds = / ¢12ds + 0(L) — 6(0)
OR OR
so the total angle through which the tangent vector to 0R turns is given by

Af = / Kods + / KdA.
OR R

In particular, when R is simply connected, Af = 2.

Theorem (Local Gauss-Bonnet)

Suppose R is a simply connected region with piecewise smooth boundary and lying
in an orthogonal parametrization. If C'= OR has exterior angles €;,j = 1,...,¢,

then ,
mds+/KdA+ €; = 27r.
/8R g R Z !

j=1




Questions?




