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Riemannian Metric

A Riemannian metric is an inner product smoothly defined on each tangent space
to a manifold. An inner product on a vector space V is a function
〈·, ·〉 : V × V → R that has the following properties:

1 bilinearity: 〈a1u1 + a2u2,v〉 = a1〈u1,v〉+ a2〈u2,v〉 and
〈v, a1u1 + a2u2〉 = a1〈v,u1〉+ a2〈v,u2〉;

2 symmetry: 〈u,v〉 = 〈v,u〉;
3 positive definiteness: if u 6= 0 then 〈u,u〉 > 0.



Definition
A Riemannian metric on a smooth manifold M is a mapping g that assigns to
every point p ∈M an inner product gp = 〈·, ·〉p on the tangent space TpM , which
depends smoothly on p ∈M , in the sense that, for any two smooth vector fields X
and Y on M , the function

p ∈M → 〈Xp, Yp〉p ∈ R

is smooth. A manifold M endowed with a Riemannian metric is called a
Riemannian manifold.



Geometric quantities defined by Riemannian metric

I The length of a tangent vector v ∈ TpM is defined by

‖v‖ = 〈v,v〉1/2;

I For a given curve c : [a, b]→M , the arc-length of c between a and b is

L(c) =

∫ b

a

∥∥∥∥dcdt (t)
∥∥∥∥ dt;

I For a pair of regular curves c1 and c2 that meet at a point p = c1(t0) = c2(t0),
the angle between the two curves at p is given by

cos θ =
〈dc1dt (t0), dc2dt (t0)〉∥∥∥dc1dt (t0)

∥∥∥ ∥∥∥dc2dt (t0)
∥∥∥



Connection

Definition (Connection)

A connection on a manifold M is a smooth map that assigns to every pair of
smooth vector fields X and Y on M another smooth vector field ∇XY on M ,
satisfying the following properties:

I bilinearity:∇a1X1+a2X2Y = a1∇X1Y + a2∇X2Y and
∇X(a1Y1 + a2Y2) = a1∇XY1 + a2∇XY2, for any a1, a2 ∈ R and any smooth
vector fields X1, X2, Y1, Y2 on M ;

I linearity in X over the smooth functions: ∇f1X1+f2X2Y = f1∇X1Y + f2∇X2Y ;

I product rule in Y : ∇X(fY ) = f∇XY +X(f)Y .

Example

∇vX defined on parametrized surface is a connection.



Connection in local coordinates
Since ∇∂/∂xi∂/∂xj is a vector field, its value at each point can be expressed as a
linear combination of the tangent space vector basis

∇ ∂
∂xi

∂

∂xj
=

m∑
k=1

Γkij
∂

∂xk
.

The n3 smooth function Γkij uniquely determine the connection. Indeed, if

X =

m∑
i=1

ui
∂

∂xi
Y =

m∑
i=1

vi
∂

∂xi

are two smooth vector fields, then

∇XY =

m∑
k=1

 m∑
i,j=1

uivjΓ
k
ij +

m∑
i=1

ui
∂vk
∂xi

 ∂

∂xk
(check by definition)



Proposition (Covariant derivative along a curve induced by connection)

Let M be a differentiable manifold with an connection ∇. There exists a unique
correspondence which associates to a vector field V along the differentiable curve
c : I →M another vector field DV

dt along c, called the covariant derivative of V
along c, such that

a) D
dt(V +W ) = DV

dt + DW
dt ;

b) D
dt(fV ) = df

dtV + f DVdt , where W is a vector field along c and f is a
differentiable function on I;

c) If V is induced by a vector field Y ∈ X (M), i.e, V (t) = Y (c(t)), then
DY
dt = ∇c′(t)Y .



proof

In local coordinate, we can define DV
dt =

∑
j
dvj
dt Xj +

∑
i,j

dxi
dt vj∇XiXj , then the

desired properties can be verified by properties of ∇XiXj . To show uniqueness, we
suppose that there exists a correspondence satisfying a)-c). Let (x1(t), ..., xn(t)) be
the local expression of c(t), and the local expression of V is

∑
j vjXj . By a) and

b), we have
DV

dt
=
∑
j

dvj
dt
Xj +

∑
j

vj
DXj

dt
.

By c) and definition of connection,

DXj

dt
= ∇c′(t)Xj = ∇∑ dxi

dt
Xi
Xj =

∑
i

dxi
dt
∇XiXj .

Therefore,
DV

dt
=
∑
j

dvj
dt
Xj +

∑
i,j

dxi
dt
vj∇XiXj

which is uniquely determined by c(t), V and bases of coordinates Xi.



Proposition

Given an connection ∇ on M , a curve α : I →M , and a tangent vector Xα(t0) at
a point α(t0) on the curve, there exists a unique parallel vector field Xα(t) along α
that extends Xα(t0)

Proof.
Let (x1, ..., xm) be a local coordinate system near α(t0) and let

Xα(t0) =

m∑
k=1

uk
∂

∂xk

be the representation of Xα(t0) in these coordinates. The condition ∇α′(t)X = 0
applies and it induces differential equations{

dvk
dt +

∑m
i,j=1 vj

dxi
dt Γkij = 0

vk(t0) = uk



cont. proof
dxi
dt is known if the curve α(t) is given, thus the differential equations have unique

solution locally by fundamental theorem of ODEs.

As what is defined for parallel transport on surfaces, the covariant derivative also
defines a parallel transport for general Riemannian manifold.

Definition
Let α : I →M be a curve in M and α(t0) be a point on the curve. The mapping

P
α(t)
α(t0) : Tα(t0)M → Tα(t)M defined by P

α(t)
α(t0)Vα(t0) = Vα(t), where Vα(t0) ∈ Tα(t0)M ,

and Vα(t) is the unique parallel extension of Vα(t0) along α(t). This mapping is
called parallel transport.



Riemannian connection

Definition (Compatibility)

Let M be a manifold with a connection ∇ and Riemannian metric 〈·, ·〉. A
connection is said to be compatible with the metric 〈·, ·〉, when for any smooth
curve c and any pair of parallel vector fields P and P ′ along c, we have
〈P, P ′〉 = constant.

Proposition

Let M be a Riemannian manifold. A connection ∇ on M is compatible with a
metric if and only if for any vector fields V and W along the differentiable curve
c : I →M we have

d〈V,W 〉 = 〈DV
dt

,W 〉+ 〈V, DW
dt
〉.



Proof.
(⇒) Choose an orthonormal basis {P1(t0), ..., Pn(t0)} of Tx(t0)M . Using previous
proposition on parallel transport of vector fields along curve, we can extend Pi(t0)
along c by parallel transport. Since ∇ is compatible with the metric, the resulted
fields {P1(t), ..., Pn(t)} is an orthonormal basis of Tc(t)M , for all t ∈ I. Write

V =
∑
i

viPi W =
∑
i

wiPi,

it follows from definition of D/dt that

DV

dt
=
∑
i

dvi
dt
Pi,

DW

dt
=
∑
i

dwi
dt

Pi.



Therefore,

〈DV
dt

,W 〉+ 〈V, DW
dt
〉 =

∑
i

(
dvi
dt
wi +

dwi
dt

vi

)
=

d

dt

(∑
i

viwi

)
=

d

dt
〈V,W 〉.

(⇐) Trivial by the equation d
dt〈V,W 〉 = 〈DVdt , w〉+ 〈V, DWdt 〉.



Definition
An connection ∇ on a smooth manifold M is said to be symmetric when

∇XY −∇YX = [X,Y ]

Theorem (Levi-Civita)

Given a Riemannian manifold M , there exists a unique connection ∇ on M
satisfying

a) ∇ is symmetric;

b) ∇ is compatible with the Riemannian metric.

Remark
In many contexts, authors refer to Levi-Civita (Riemannian) connection if no
specification provided. In local coordinates, ∇XiXj =

∑
ΓkijXk, where

Γmij =
1

2

∑
k

(
∂gjk
∂xi

+
∂gki
∂xj

− ∂gij
∂xk

)
gkm



Geodesics in local coordinates

Definition
A smooth curve γ : I →M is called a geodesic if its velocity vector field is parallel,
i.e., ∇γ′γ′ = 0 which agrees with the geodesics defined on surfaces.

We can rewrite equation ∇γ′γ′ = 0 with respect to a local coordinate system
(x1, ..., xm). If (x1(t), ..., xm(t)) represents a geodesic, then using the following
covariant derivative equation of a vector field along a curve,

m∑
k=1

dvk
dt

+
∑
i,j

vj
dxi
dt

Γkij

 ∂

∂xk

we obtain the second order system

d2xk
dt2

+

m∑
i,j=1

dxi
dt

dxj
dt

Γkij = 0,

whose solution is known by fundamental theorem of ODEs.



Remark
Before using fundamental theorem of ODEs, we need to change the second oder
ode to first oder by introducing new variables

yi =
dxi
dt

and this reduces the geodesic equation to{
dxi
dt = yi
dyi
dt = −

∑m
i,j=1 Γkijyiyj

Integral of this first order system is called geodesic flow on the tangent bundle TM .



Example (Geodesics on hyperbolic plane)

We show that the geodesics of the Poincaré half plane are vertical lines and
semi-circles with the center on the x-axis. For the hyperbolic plane, we have
g11 = g22 = 1

y2
, and g12 = g21 = 0. The entries of the inverse matrix gkl are

g11 = g22 = y2, and g12 = g21 = 0. We can also compute Christoffel symbols

Γ1
12 = Γ1

21 = Γ2
22 = −Γ2

11 = −1

y
,

while the rest equal 0. The geodesic equations are
d2x
dt2
− 2

y
dx
dt
dy
dt = 0

d2y
dt2

+ 1
y

(
dx
dt

)2 − 1
y

(
dy
dt

)2
= 0



I If dx
dt = 0 for all t, the first equation is satisfied, so the vertical lines x =

constant are geodesics.

I If dx
dt 6= 0 at some t, then we can locally solve for x as a function of y. If

u = dx
dy then dx

dt = udy
dt and so, by the chain rule,

d2x

dt2
=
du

dy

(
dy

dt

)2

+ u
d2y

dt2
.

By substituting d2x
dt2

from the first equation and d2y
dt2

from the second equation,
after simplification we obtain

du

dy
=
u3 + u

y
.

Integration by partial fraction gives

u(y) =
dx

dy
= ± cy√

1− c2y2



so

x = ±
∫

cy√
1− c2y2

dy = ∓

√(
1

c

)2

− y2 + d

for some d ∈ R.



The Exponential Map

The exponential map describes the dependence of geodesics emanating from the
same point on their initial velocity. If v ∈ TpM and the geodesic γp,v(t) is defined
on [0, 1], then we define Expp(v) by

Expp(v) = γp,v(1). (why it’s well defined?)



Questions?


