
Lecture 10: Difference and Differential
Equations

HISTORIC NOTES
The study of dynamical system dates back to Newtoninan mechanics despite the word was not used as
a clear branch of mathematics. Today Henri Poincaré is regard as the the founder of dynamical
systems in modern sense. The essence of methodology of "dynamical system", at least in a classic
literature, is to study the geometry of curves defined by differential equations that cannot be solved
explicitly. The following statement is presented in "Mémoire sur les courbes définies par une équation
différentielle" by Poincaré published in 1881:

"Une théorie complète des fonctions définies par les équations différentielles serait d’une grande utilité

dans un grand nombre de ques- tions de Mathématiques pures ou de Mécanique. Malheureusement, il est

évident que dans la grande généralité des cas qui se présentent on ne peut intégrer ces équations à l’aide

des fonctions déjà connues, par exemple à l’aide des fonctions définies par les quadratures. Si l’on

voulait donc se restreindre aux cas que l’on peut étudier avec des intégrales définies ou indéfinies, le

champ de nos recherches serait singu lièrement diminué, et l’immense majorité des questions qui se

présentent dans les applications demeureraient insolubles."

Poincaré clearly pointed out that it is necessary to study functions (mappings) defined by differential
equations without trying to reduce them to simpler function (integrals). But

what are the tools to understand geometric properties of differential equations, if one does not attempt to

solve them?

In this chapter, we will see "eigenvalues, diagonalization, change of basis (coordinates)" appearing
as the most fundamental and powerful tools in understanding patterns of curves defined by differential
equations.

DIFFERENCE EQUATIONS
Example 1.0.1 (Cat/mouse population problem). Suppose the cat population at month k is ck and the

mounse population at month k is mk, and let xk =


ck
mk

�
denote the population vector at month K.

Suppose

xk+1 = Axk

where

A =


0.7 0.2
�0.6 1.4

�

and an initial population vector x0 is given. Then the population vector xk can be computed from

xk = Akx0,

so we want to compute Ak
by diagonalizing the matrix A.

Since the charactieristic polynomial of A is

p(t) = t2 � 2.1t+ 1.1 = (t� 1)(t� 1.1),

the eigenvalues are 1 and 1.1. The corresponding eigenvectors are

v1 =


2
3

�
and v2 =


1
2

�
,

and so we have the change-of-basis formula matrix

P =


2 1
3 2

�
.
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Then we have

A = P⇤P�1

where

⇤ =


1 0
0 1.1

�
,

and so

Ak = P⇤kP�1 =


2 1
3 2

� 
1 0
0 1.1k

� 
2 �1
�3 2

�

Note that if x0 =


c0
m0

�
is the original population vector, we have

xk = (2c0 �m0)


2
3

�
+ (�3c0 + 2m0)(1.1)

k


1
2

�

We can conclude, if 3c0 = m0, the second terms drops out and the population vector stays constant. If

3c0 < 2m0, the first term is still constant, and the second term increases exponentially. If 3c0 > 2m0, we

can see that the population vector decreases exponentially, the mouse being the first to disappear.

For general diagonalizable matrix A, the column vectors of P are the eigenvectors v1, ...,vn, let

P�1x0 =

2

6664

c1
c2
...
cn

3

7775
,

we have
Akx0 = P⇤k(P�1)x0 = c1�

k
1v1 + ...+ cn�

k
nvn.

SYSTEMS OF DIFFERENTIAL EQUATIONS
Another powerful application of linear algebra comes from the study of systems of ordinary differential
equations (ODEs). Given an n⇥ n matrix A and a vector x0, we want to find differentiable vector-valued
function x(t) so that

dx(t)

dt
= Ax(t), x(0) = x0.

Example 1.0.2. Suppose n = 1, the system becomes

x0(t) = ax(t), x(0) = x0.

It is not hard to find a solution x(t) = x0eat, but do we know there can be no more? Suppose y(t) were any

solution of the original problem. Then the function z(t) = y(t)e�at
must satisfy the equation

z0(t) = y0(t)e�at + y(t)(�ae�at) = 0,

and so z(t) must be a constant function. Since z(0) = y(0) = x0, we have that y(t) = x0eat.

Example 1.0.3. Consider the 2⇥ 2 example:

dx1

dt
= ax1(t)

dx2

dt
= bx2(t)

with the initial x1(0) and x2(0). Since x1(t) and x2(t) appear completely independently in these equations,

the solution of the system will be

x1(t) = x1(0)e
at, x2(t) = x2(0)e

bt.

In vector notation, we have

x(t) =


x1(0)eat

x2(0)ebt

�
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Recall that for any real number x, the Taylor series expansion

ex = 1 + x+
1

2
x2 + ...

Now, given an n⇥ n matrix A, we define a new matrix eA, called the exponential of A, by

eA := I +A+
1

2
A2 + ...

The series converges. in general, trying to evaluate this series is extremely difficult since the
coefficients of Ak are not easily in terms of the coefficients of A. However, when A is a diagonalizable
matrix, it is easy to compute eA, Ak = P⇤kP�1. It holds that

eA =
1X

k=0

Ak

k!
=

1X

k=0

P⇤kP�1

k!
= P

 1X

k=0

⇤k

k!

!
P�1 = Pe⇤P�1.

An immediate application is following.

Example 1.0.4. Let A =


2 0
3 �1

�
. Then

⇤ =


2

�1

�
P =


1 0
1 1

�

Thus we have

et⇤ =


e2t

e�t

�
and etA =


e2t 0

e2t � e�t e�t

�
.

Proposition 1.0.5. Let A be a diagonalizable n⇥ n matrix. The general solution of initial value problem

x0(t) = Ax(t), x(0) = x0

is given by x(t) = etAx0

Even when A is not diagonalizable, we may differentiate the exponential series term-by-term to
obtain

d

dt
etA = AetA.

Thus we have

Theorem 1.0.6. Suppose A is an n⇥ n matrix. Then the unique solution of the initial value problem

x0(t) = Ax(t), x(0) = x0

is x(t) = etAx0.

PLANAR LINEAR SYSTEMS
We restrict our attention to the most important class of planar systems of differential equations,
namely, linear systems. In the autonomous case, these systems assume the simple form

x0
1 = ax1 + bx2

x0
2 = cx1 + dx2

where a, b, c, d are constants. We may abbreviate the system by using matrix A

x0 = Ax.

Note that the origin is always an equilibrium point for a linear system. To find other equilibria, we
must solve the linear system of algebraic equations

ax1 + bx2 = 0

cx1 + dx2 = 0.
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This system has a nonzero solution if and only if detA = 0.
We are more interested in finding nonequilibrium solutions of the linear system x0 = Ax. The key

observation is the following: suppose v0 for which we have

Av0 = �v0 where � 2 R.

Then the function
x(t) = e�tv0

is a solution of the system. To verify this, we compute

x0(t) = �e�tv0) = e�t(�v0) = e�t(Av0) = A(e�tv0) = Ax(t).

The following theorem indicates an important relationship between eigenvalues, eigenvectors, and
solutions of systems of differential equations.

Theorem 1.0.7. Suppose that v0 is an eigenvector for the matrix A with associated eigenvalue �. Then the

function x(t) = e�tv0 is a solution of the system x0 = Ax.

Example 1.0.8. Consider

A =


1 3
1 �1

�

Then A has an eigenvector v0 = (3, 1)> with associated eigenvalue � = 2 and v1 = (1,�1)> is an

eigenvector with associated eigenvalue � = �2. Thus, for the system x0 = Ax we know three solutions:

the equilibrium solution at the origin together with

x1(t) = e2t

3
1

�
and x2(t) = e�2t


1
�1

�

SOLVING LINEAR SYSTEMS
As we saw in the previous section, if we find two real roots �1 and �2 (with �1 6= �2) fo the characteristic
equation, then we may generate a pair of solutions of the system of differential equations of the form

xi(t) = e�itvi

where vi is the eigenvector associated to �i. Note that each of these solutions if a straight-line solution.
And note that, if �i > 0, then

lim
t!1

|xi(t)| = 1 and lim
t!1

xi(t) =


0
0

�
.

The magnitude of the solution xi(t) increases monotonically to 1 along the ray through vi as t
increases, and xi(t) tends to the origin along this ray in backward time. The exact opposite situation
occurs if �i < 0, whereas, if �i = 0, the solution xi(t) is the constant solution xi(t) = vi for all t.

We now try to find all solutions of the system given this pair of special solutions. Suppose we have
two distinct real eigenvalues �1 and �2 with eigenvectors v1,v2. Then v1 and v2 are linearly
independent. Thus they form a basis of R2. So given any point z0 2 R2, we can find a unique pair of
real numbers ↵ and � such that

↵v1 + �v2 = z0.

Consider the function
z(t) = ↵x1(t) + �x2(t)

where xi(t) are the straight-line solutions. We claim that z(t) is a solution of x0 = Ax. To see this we
compute

z0(t) = ↵x0
1(t) + �x0

2(t) = ↵Ax1(t) + �Ax2(t) = A(↵x1(t) + �x2(t)) = Az(t)

Moreover, z(t) is a solution that satisfies z(0) = z0. Finally, we claim that z(t) is the unique solution
that satisfies z(0) = z0. In order to show this, we suppose that y(t) is another such solution with
y(0) = z0. Then we may write

y(t) = ⇠(t)v1 + µ(t)v2

with ⇠(0) = ↵, µ(0) = �. Hence
Ay(t) = y0(t) = ⇠0(t)v1 + µ0(t)v2.
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But
Ay(t) = ⇠(t)Av1 + µ(t)Av2 = �1⇠(t)v1 + �2µ(t)v2.

Therefore, we have
⇠0(t) = �1⇠(t) and µ0(t) = �2µ(t).

It follows that
⇠(t) = ↵e�1t, µ(t) = �e�2t

so that y(t) is equal to z(t). We therefore have shown the following

Theorem 1.0.9. Suppose A has a pair of real eigenvalues �1 6= �2 and associated eigenvectors v1 and v2.

Then the general solution of the linear system x0 = Ax is given by

x(t) = ↵e�1tv1 + �e�2tv2.

REAL DISTINCT EIGENVALUES
Given the linearity principle, we may compute the general solution of any planar system. Consider x0 =
Ax and suppose that A has two real eigenvalues �1 < �2. Assuming that �i 6= 0, there are three cases to
consider:

1. �1 < 0 < �2;

2. �1 < �2 < 0;

3. 0 < �1 < �2.

Example 1.0.10 (Saddle). Consider the simple system
dx
dt = Ax where

A =


�1 0
0 �2

�

with �1 < 0 < �2. This can be solved immediately since the system decouples into two unrelated first-

order equations. The general solution has the following form:

x(t) = ae�1t


1
0

�
+ be�2t


0
1

�
.

• Since �1 < 0, the straightline solution of the form ↵e�1t(1, 0)> lie on the x-axis and tend to (0, 0)> as t !
1. This axis is called the stable line.

• Since �2 > 0, the solution �e�2t(0, 1)> lie on the y-axis and tend away from (0, 0)> as t ! 1. This axis is

called the unstable line.

• All other solutions tend to 1 in the direction of the unstable line as t ! 1. In backward time, these

solutions tend to 1 in the direction of the stable line.

Example 1.0.11 (Sink). Consider the case
dx
dt = Ax when the matrix A is again diagonal, but has

eigenvalues �1 < �2 < 0. To understand the way in which the solution curve approaches the origin, we

compute the slope
dx2
dx2

with � 6= 0.

dx2

dx1
=

�2�e�2t

�2↵e�1t
=

�2�

�1↵
e(�2��1)t.

Since �2 � �1 > 0, it follows that these slopes approaches +1 and �1. Thus these solutions tend to the

origin tangentialy to the y-axis.
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Example 1.0.12 (Source). When the matrix satisfies 0 < �2 < �1, our vector field may be regarded as the

negative of the previous example. The general solution and the phase portrait remain the same, except

that all solutions now tend away from (0, 0)> along the same path.

COMPLEX EIGENVALUES
It may happen that the roots of the characteristic polynomial are complex numbers. When the matrix
A has complex eigenvalues, we no longer have straight line solutions. However, we can still derive the
general solution.

Example 1.0.13 (Center). Consider x0 = Ax with

A =


0 �
�� 0

�

and � 6= 0. The characteristic polynomial is �2+�2 = 0, so the eigenvalues are now the impaginary numbers

±i�. Without worrying about the "complex vectors", we try to find the eigenvector corresponding to � = i�.

We therefore solve 
�i� �
�� �i�

� 
x
y

�
=


0
0

�

since the second equation is redundant. Thus we find a complex eigenvector (1, i)>, and so the function

x(t) = ei�t

1
i

�

is a complex solution.

With the help of Euler’s formula,

ei�t = cos�t+ i sin�t

we can rewrite the solution as

x(t) =


cos�t+ i sin�t

i(cos�t+ i sin�t)

�
=


cos�t+ i sin�t
� sin�t+ i cos�t

�
.
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By breaking x(t) into its real and imaginary parts, we have

x(t) = xRe(t) + ixIm(t)

where

xRe(t) =


cos�t
� sin�t

�
, xIm(t) =


sin�t
cos�t

�
.

But now we can verify that both xRe(t) and xIm(t) are solutions of the original system.

x0
Re(t) + ix0

Im(t) = x0(t) = Ax(t) = A(xReal(t) + ixIm(t)) = AxRe(t) + iAxImaginary(t).

Equating the real and imaginary parts of this equation yields

x0
Re = AxRe and x0

Im = AxIm

which shows that both are indeed solutions. Moreover, since

xRe(0) =


1
0

�
xIm(0) =


0
1

�
.

The linear combination of them is

x(t) = c1x<(t) + c2x=(t)

We next show that this is the general solution of this equation. Suppose that this is not the only solution,

let

y(t) =


u(t)
v(t)

�

be another solution. Consider the complex function

f(t) = (u(t) + iv(t))ei�t.

Differentiating this expression and using the fact that y(t) is a solution of the equation yields f 0(t) = 0.
Hence u(t) + iv(t) is a complex constant times e�i�t

. It follows that y(t) is a linear combination of x<(t) and

x=(t). Furthermore, note that each of these solutions is a periodic function with period
2⇡
� . Indeed, the

phase portrait shows that all solutions lie on circles centered at the origin. This type of system is called a

center.

Example 1.0.14 (Spiral sink, spiral source). More generally, consider x0 = Ax for

A =


↵ �
�� ↵

�

and ↵,� 6= 0. The characteristic equation is

�2 � 2↵�+ ↵2 + �2,

so the eigenvalues are

�1 = ↵+ i�, �2 = ↵� i�
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GRADIENT SYSTEMS
A gradient system on Rn is a system of differential equations of the form

dx

dt
= �rf(x)

where f : Rn ! R is a C1 function. The vector field rf is called the gradient of f . Gradient system have
special properties that make their phase portraits rather simple. The following equality is fundamental:

Dfx(y) = rf(x) · y.

This says that the derivative of f at x evaluated at y is given by the dot product of the vectors rf(x)
and y. This follows from the formula

Dfx(y) =
nX

j=1

@f

@xj
yj .

Let x(t) be a solution of the gradient system with x(0) = x0, and let ḟ : Rn ! R be the derivative of f
along this solution. That is,

ḟ(x) =
d

dt
f(x(t)).

Proposition 1.0.15. The function f is a Lyapunov function for the system x0 = �rf(x). Moreover, ḟ(x) = 0
if and only if x is an equilibrium point.

Proof. By the chain rule we have

ḟ(x) = Dfx(x
0) = rf(x) · (�rf(x)) = �krf(x)k 2  0.

In particular, ḟ(x) = 0 if and only if rf(x) = 0.

An immediate consequence of this is the fact that if x⇤ is an isolated minimum of f , then x⇤ is an
asymptotically stable equilibrium of the gradient system.

HOMEWORK
Solve the following systems with arbitrary initial condition x(0) = (x1(0), x2(0)).

1.
dx

dt
=


1 2
0 3

�
x

2.
dx

dt
=


1 2
3 6

�
x
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