
Lecture 9: Quadratic Forms

HISTORICAL NOTES
The history of concerning quadratic forms is backed to acient Greece and India.
• Representation of integers as sums of two squares, motivated by Pythagoras theorem and geometry.
• Solution of Pell’s equation. Pell’s equation was considered by the Indian mathematician

Brahmagupta in the 7th century CE. The Pell’s equation, or called Pell-Fermat equation is

x
2 � ny

2
= 1

where n is a given positive nonsquare integer, and integer solutions are sought for x and y.
• Specific Pell’s equation was considered 400 BC in Greece. The positive integer solutions for

x
2 � 2y

2
= 1 or x

2 � ny
2
= �1

can be used to approximate
p
2, i.e., using x

y . For example, x = 17, y = 12 and x = 577, y = 408 will give
two approximations, 17/12 and 577/408, of

p
2.

• Lagrange proved that, as long as n is not a perfect square, Pell’s equation has infinitely many distinct
integer solutions. Actually, William Brouncker was the first European to solve this equation, but
Euler mistakenly attributed Brouncker’s solution to John Pell.

• In general, a binary quadratic form is a quadratic homegeneous polynomial in two variables

Q(x, y) = ax
2
+ bxy + cy

2

the coefficients, of course, can go beyond integral numbers.

CONICS AND QUADRATIC SURFACES
In this lecture, we will use the spectrual theorem to analyze the equations of conic sections and
quadratic surfaces.

Suppose we are given the quadratic equation

x
2
1 + 4x1x2 � 2x

2
2 = 6

Notice that we can write the quadratic expression

x
2
1 + 4x1x2 � 2x

2
2 =

⇥
x1 x2

⇤ 1 2

2 �2

� 
x1

x2

�
= x>

Ax

where
A =


1 2

2 �2

�

is the symmetric matrix. To diagonalize A, we have to finish following three steps:

1. Find the eigenvalues of A. Set

det(A� �I) = det


1� � 2

2 �2� �

�
== �

2
+ �� 6 = 0

The eigenvalues are
�1 = 2, �2 = �3.

2. Find the eigenvectors.

For �1 = 2, 
1� 2 2

2 �2� 2

�
v = 0

Then
�v1 + 2v2 = 0,
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and an eigenvector corresponding to �1 = 2 is (2, 1)
>.

For �2 = �3, 
1� (�3) 2

2 �2� (�3)

�
v = 0

gives
4v1 + 2v2 = 0

and then an eigenvector corresponding to �2 = �3 is (�1, 2)
>

Thus, we have that
A = Q⇤Q

>

where
Q =

1p
5


2 �1

1 2

�
and ⇤ =


2 0

0 �3

�
.

If we make the substitution y = Q
>x, then we have

x>
Ax = x>

(Q⇤Q
>
)x = (Q

>x)>⇤(Q>x) = y>
⇤y = 2y

2
1 � 3y

2
2 .

Note that the conic is much easier to understand in the y1y2-coordinates.
The same trick can be used for any quadratic equation

↵x
2
1 + 2�x1x2 + �x

2
2 = �,

where ↵,�, �, � are real numbers. Now we set

A =


↵ �

� �

�
,

so that the equation can be written as
x>

Ax = �.

Since A is symmetric, we can find a diagonal matrix ⇤ and an orthogonal matrix Q so that A = Q⇤Q
>.

Thus, setting y = Q
>x, we can rewrite equation as

y>
⇤y = �1y

2
1 + �2y

2
2 = �.

From this expression, we can infer that the "shape" of a quadratic form as a two-variable function is
determined by the signs of eigenvalues of A.

Now we move on briefly to the three-dimensional setting. Quadratic surfaces include those shown in
the following figure.

Consider the surface defined by the equation

2x1x2 + 2x1x3 + x
2
2 + x

2
3 = 2.

Observe that if

A =

2

4
0 1 1

1 1 0

1 0 1

3

5

is the symmetric matrix, then
x>

Ax = 2x1x2 + 2x1x2 + x
2
2 + x

2
3,
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and so we use the diagonalization and the substitution y = Q
>x as before to write

x>
Ax = y>

⇤y, where ⇤ =

2

4
�1 0 0

0 1 0

0 0 2

3

5 .

From the y-coordinates we can see that the graph is the hyperboloid of one sheet.

QUADRATIC FORMS
Definition 1.0.1. A quadratic form in n variables x1, ..., xn is a homogeneous second-degree polynomial

in these variables. So the polynomial has the form

Q(x1, ..., xn) =

nX

i,j

qijxixj .

Every quadratic form can be viewed as a function of the vector x = x1v1 + ...+ xnvn, where v1, ...,vn is
some fixed basis of the vector space V of degree n.

Quadratic forms have the property of being very similar to linear functions, and in the sequel, we
shall unite the theory of quadratic forms with that of linear functions and transformations. The
following notion will serve as a foundation for this.

Definition 1.0.2. A function B(x,y) that assigns to two vectors x,y 2 V a scalar value is called a

bilinear form on V if it is linear in each of its arguments. In other words, the following conditions must be

satisfied for all vectors of the space V and scalars c.

B(x1 + x2,y) = B(x1,y) +B(x2,y)

B(cx,y) = cB(x,y)

B(x,y1 + y2) = B(x,y1) +B(x,y2)

B(x, cy) = cB(x,y).

If {v1, ...,vn} is some basis of V , then we can express the bilinear form in terms of the coordinates of
the vectors

B(x,y) =
nX

i,j=1

= bijxiyi, where bij = B(vi,vj).

In this case, the square matrix B = (bij) is called the matrix of the bilinear form B in the basis
{v1, ...,vn}. The value of B(x,y) can be expressed in terms of the elements of the matrix B and the
coordinates of the vectors x and y in the basis {v1, ...,vn}, which means that a bilinear form, as a
function of the arguments x and y, is completely defined by its matrix B. This same formula shows
that if we replace the argument y in the bilinear form B by x, we obtain the quadratic form Q(x]), and
moreover, any quadratic form can be obtained in this way. To do so, we need only choose a bilinear
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form B(x,y) with matrix B = (bij) satisfying the condition B(vi,vj) = bij, where bij are the coefficients
in the quadratic form.

An important observation is that the set of bilinear forms on a vector space V is itself a vector space
if we define on it in a natural way the operations of addition of bilinear forms and multiplication by a
scalar. Furthermore, the null vector in such a space is the bilinear form that is identically equal to
zero.

The connection between bilinear form and linear transformation is based on the following result.

Theorem 1.0.3. There is an isomorphism between the space of bilinear forms Q on the vector space V and

the space L(V, V ⇤
) of linear transformations A : V ! V

⇤
.

Proof. Ex.

It follows from this theorem that the study of bilinear forms is analogous to that of linear
transformations. In math, physics and optimization, a special role is played by two particular types of
bilinear form.

Definition 1.0.4. A bilinear form B(x,y) is said to be symmetric if

B(x,y) = B(y,x)

and antisymmetric if

B(x,y) = �B(y,x),

for all x,y 2 V .

Theorem 1.0.5. Every quadratic form Q(x) on the space V can be represented in the form Q(x) = B(x,x),
where B is a symmetric bilinear form, and moreover, for the given quadratic form Q, the bilinear form B is

unique.

Proof. To construct such a bilinear form B from a given quadratic form, we can do the following,

B(x,y) =
1

4
(Q(x+ y)�Q(x� y))

The following result is for antisymmetric forms.

Theorem 1.0.6. For every antisymmetric bilinear form Q(x,y) on the space V , we have

Q(x,x) = 0.

Conversely, if above equality is satisfied for every vector in V , then the bilinear form Q(x,y) is

antisymmetric.

REDUCTION TO CANONIMCAL FORM
Similar to conics and quadratic surfaces, it is possible to transform quadratic forms into the simplest
possible form, called canonical. As in the case of the matrix of a linear transformation, canonical form
is obtained by the selection of a special basis of the given vector space. Namely, the required basis
must possess the property that the matrix of the symmetric bilinear form corresponding to the given
quadratic form assumes diagonal form in that basis. This property is directly connected to the
important notion of orthogonality, which has been discussed from perspective of inner product. We
note that the notion of orthogonality can be formulated in a way that is well defined for bilinear forms
that are not necessarily symmetric, but it can be most simply defined for symmetric and antisymmetric
bilinear forms.

Let Q(x,y) be a symmetric bilinear form defined on a finite dimensional vector space V .

Definition 1.0.7. Vectors x and y are said to be orthogonal if Q(x,y) = 0.

The dimensionality and space decomposition property of V with respect to Q is the same as that for
Euclidean inner product.
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Theorem 1.0.8. For every quadratic form Q̃(x), there exists a basis in which the form can be written as

Q̃(x) = �1x
2
1 + ...+ �nx

2
n,

where x1, ..., xn are the coordinates of the vector x in this basis.

Proof. Let Q(x,y) be a symmetric bilinear form associated with the quadratic form Q̃(x). If Q̃(x) is
identically zero, then the theorem is true. If the quadratic form Q̃(x) is not identically zero, then there
exists a vector v1 such that Q̃(v1) = Q(v1,v1) 6= 0. This implies that the restriction of the bilinear form
Q to the subspace V

0
= hv1i is nonsingular, and therefore, for the subspace V

0
= hv1i we have the

decomposition
V = hv1i � hv1i?.

Since dimhv1i = 1, then we have that dimhv1i? = n� 1.
By induction, we may assume the theorem to have been proved for the space hv1i?. Thus in this

space there exists a basis v2, ...,vn such that Q(vi,vj) = 0 for all i 6= j � 2. Then in the basis v1, ...,vn,
the quadratic form Q̃(x) can be written as the form in the theorem.

QUADRATIC FORMS AND MAXIMUM/MINIMUM
PROBLEMS
Definition 1.0.9. Let X ⇢ Rn

, and let a 2 X. The function f : X ! R has a global maximum at a if f(x) 
f(a); the function f has a local maximum at a if, for some � > 0, we have f(x)  f(a) for all x 2 B(a, �) \X.

We say a is a local or global maximum point of f . The minimum can be defined analogously. If a is either

a local maximum or local minimum point, we say it is an extremum.

Lemma 1.0.10. Suppose f is defined on some neighborhood of the extremum a and f is differentiable at

a. Then Df(a) = 0, or, equivalently, rf(a) = 0.

Definition 1.0.11. Suppose f is differentiable at a. We say a is a critical point if Df(a) = 0. A critical

point a with the property that f(x) < f(a) for some x near a and f(x) > f(a) for other x near a is called a

saddle point.

Just as the second derivative test in single-variable calculus often allows us to differentiate between
local minima and local maxima, there si something quite analogous in the multivariable case.

Lemma 1.0.12. Suppose g : [0, 1] ! R is twice differentiable. Then

g(1) = g(0) + g
0
(0) +

1

2
g
00
(⇠) for some 0 < ⇠ < 1.

The second derivative in the multivariable setting becomes a quadratic form.

Definition 1.0.13. Assume f 2 C
2

in a neighborhood of a. Define the symmetric matrix

Hess(f)(a) =


@
2
f

@xi@xj
(a)

�
.

Define the associated quadratic form Hf,a : Rn ! R by

Hf,a(h) = h>
(Hess(f)(a))h =

nX

i,j

@
2
f

@xi@xj
(a)hihj .

Proposition 1.0.14. Suppose f : B(a, r) ! R is C
2
. Then for all h with khk < r we have

f(a+ h) = f(a) +Df(a)h+
1

2
Hf,a+⇠h(h) for some 0 < ⇠ < 1.

Consequently,

f(a+ h) = f(a) +Df(a)h+
1

2
Hf,a(h) + ✏(h)

where

✏(h)/ khk 2 ! 0 as h ! 0.
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Proof. Using the chain rule,

g
0
(t) = Df(a+ th)h =

nX

i=1

@f

@xi
(a+ th)hi

g
00
(t) =

nX

i=1

0

@
nX

j=1

@
2
f

@xi@xj
(a+ th)hj

1

Ahi =

nX

i,j=1

@
2
f

@xi@xj
(a+ th)hihj = Hf,a+th.

Substitution yields the first result.
Since f is C

2, given any ✏ > 0, there is � > 0 such that whenever v < � we have

kHess(f)(a+ v)�Hess(f)(a)k < ✏.

Using the Cauchy-Schwarz inequality, we have that
���h>

Ah
���  kAk khk 2

.

So whenever khk < �, we have, for any 0 < ⇠ < 1,

|Hf,a+⇠h(h)�Hf,ah| < ✏ khk 2
.

By definition, ✏(h) = 1
2 (Hf,a+⇠h �Hf,a(h)), so

|✏(h)|
khk 2

=
|Hf,a+⇠h(h)�Hf,a(h)|

2 khk 2
<

✏

2

whenever khk < �.

Definition 1.0.15. Given a symmetric n⇥ n matrix A, we say the associated quadratic form Q : Rn ! R,

Q(x) = x>
Ax, is

• positive definite if Q(x) > 0 for all x 6= 0,

• negative definite if Q(x) < 0 for all x 6= 0,

• positive semidefinite if Q(x) � 0 for all x and = 0 for some x 6= 0,

• negative semidefinite if Q(x)  0 for all x and = 0 for some x 6= 0,

• indefinite if Q(x) > 0 for some x and Q(x) < 0 for other x.

Theorem 1.0.16. Suppose f : B(a, r) ! R is C
2

and a is a critical point. If Hf,a is positive (resp., negative)

definite, then a is a local minimum (resp., maximum) point; if Hf,a is indefinite, then a is a saddle point. If

Hf,a is semidefinite, we can draw no conclusions.

HOMEWORK
1. We say a symmetric matrix A is positive definite if Ax · x > 0 for all x 6= 0, negative definite if Ax · x < 0

for all x 6= 0, and positive (resp., negative) semidefinite if Ax · x � 0 (resp.,  0) for all x.

(a) Show that if A and B are positive or negative definite, the so is A+B.

(b) Show that A is positive (resp., negative) definite if and only if all its eigenvalues are positive (resp.,
negative).

(c) Show that A is positive (resp., negative) semidefinite if and only if all its eigenvalues are
nonnegative (resp., nonpositive).

(d) Show that if C is any m⇥ n matrix of rank n, then A = C
>
C has positive eigenvalues.

(e) Prove or disprove: If A and B are positive definite, then so is AB +BA.

2. Show that the quadratic form

Q(x, y, z) = 5(x
2
+ y

2
+ z

2
)� 4(xy + yz + zx)

is positive definite.

3. What is the area of 5x2
+ 8y

2
+ 4xy  1?
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