
Lecture 8: Eigenvalues and Eigenvectors

HISTORIC NOTES
In the late 1700s Joseph-Louis Lagrange (1736–1813) attempted to prove that the solar system was
stable—that is, that the planets would not ever widely deviate from their orbits. Lagrange modeled
planetary motion using differential equations. He was assisted in his effort by Pierre-Simon Laplace
(1749–1827). Together they reduced the solution of the differential equations to what in actuality was
an eigenvalue problem for a matrix of coefficients determined by their knowledge of the planetary
orbits. Without having any official notion of matrices, they constructed a quadratic form from the array
of coefficients and essentially uncovered the eigenvalues and eigenvectors of the matrix by studying the
quadratic form.

THE CHARACTERISTIC POLYNOMIAL
Recall that a linear transformation T : V ! V is diagonalizable if there is an basis B = {v1, ....,vn} for
V so that the matrix for T with respect to that basis is diagonal. This means precisely that, for some
scalars �1, ...,�n, we have

T (v1) = �1v1

T (v2) = �2v2

...
T (vn) = �nvn.

An n ⇥ n matrix A is diagonalizable if the associated linear transformation µA : Rn ! Rn is
diagonalizable. So A is diagonalizable precisely when there is a basis {v1, ...,vn} for Rn with the
property that Avi = �ivi. We can write these equations in matrix form:

A

2

4
| | |
v1 v2 . . . vn

| | |

3

5 =

2

4
| | |
v1 v2 . . . vn

| | |

3

5

2

6664

�1

�2

. . .
�n

3

7775

Thus, if we let P be the n⇥ n matrix whose columns are the vectors v1, ...,vn and ⇤ be the n⇥ n diagonal
matrix with diagonal entries �1, ...,�n, then we have

AP = P⇤, and so P�1AP = ⇤.

Definition 1.0.1. Let T : V ! V be a linear transformation. A nonzero vector v 2 V is called an
eigenvector of T if there is a scalar � so that T (v) = �v. The scalar � is called the associated eigenvalue
of T .

This definition leads to a convenient reformulation of diagonalizability:

Proposition 1.0.2. The linear transformation T : V ! V is diagonalizable if and only if there is a basis
for V consisting of eigenvectors of T .

An important question is how can we find eigenvectors. We most of the time will have a matrix
representation for a linear map. Let’s say A denote the matrix for T with respect to some basis. We
start by observing that the set of eigenvectors with eigenvalue �, together with the zero vector, forms a
subspace.

Lemma 1.0.3. Let A be an n⇥ n matrix, and let � be any scalar. Then

E(�) = {x 2 Rn : Ax = �x} = N(A� �I)

is a subspace of Rn. Moreover, E(�) 6= {0} if and only if � is an eigenvalue, in which case we call E(�) the
�-eigenspace of the matrix A.
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Proof. The null space N(A � �I) is a subspace. By definition � is an eigenvalue if and only if there is a
nonzero vector in E(�)

The following result is a computational tool for finding eigenvalues.

Proposition 1.0.4. Let A be an n⇥ n matrix. Then � is an eigenvalue of A if and only if det(A� �I) = 0.

Proof. From above lemma we know that � is an eigenvalue if and only if the matrix A � �I is singular.
The determinant of a singular matrix must be zero.

Example 1.0.5. Find the eigenvalues and eigenvectors of the matrix

A =


3 1
�3 7

�

Definition 1.0.6. Let A be a square matrix. Then p(t) = pA(t) = det(A � tI) is called the characteristic
polynomial of A.

Lemma 1.0.7. If A and B are similar matrices, the pA(t) = pB(t).

Proof. Suppose B = P�1AP . Then

pB(t) = det(B � tI) = det(P�1AP � tI) = det(P�1(A� tI)P ) = det(A� tI) = pA(t).

DIAGONALIZIBILITY
Theorem 1.0.8. Let T : V ! V be a linear transformation. Suppose v1, ...,vk are eigenvectors of T with
distinct corresponding eigenvalues �1, ...,�k. Then {v1, ...,vk} is a linearly independent set of vectors.

Proof. Let m be the largest number between 1 and k so that {v1, ...,vm} is linear independent. We need
to show that m = k.

By contradiction, suppose m < k. Then {v1, ...,vm} is linearly independent and {v1, ...,vm,vm+1} is
linearly dependent. Then we have

vm+1 = c1v1 + ...+ cmvm

for some ci’s. Then using Tvi = �ivi, we can have

0 = (T � �m+1I)vm+1 = (T � �m+1I)(c1v1 + ...+ cmvm) = c1(�1 � �m+1)v1 + ...+ cm(�m � �m+1)vm.

Since �i � �m+1 6= 0 for all i, and since {v1, ...,vm} is linearly independent, it has to be that

c1 = c2 = ... = cm = 0,

contradicting vm+1 6= 0. Thus, m < k is impossible.

We now arrive at our first result that gives a sufficient condition for a linear transformation to be
diagonalizable. Note that we require the eigenvalues to be real numbers, the situation with complex
eigenvalues will be discussed later.

Corollary 1.0.9. Suppose V is an n-dimensional vector space and T : V ! V has n distinct (real)
eigenvalues. Then T is diagonalizable.

Proof. Consider the matrix of T with respect to the basis of eigenvectors.

The previous condition is “sufficient". There are many diagonalizable matrices with repeated
eigenvalues. We discuss two ways in which the hypotheses of Corollary can fail: The characteristic
polynomial may have complex roots or it may have repeated roots.
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Example 1.0.10. Consider the matrix

A =

"
1p
2

� 1p
2

1p
2

1p
2

#

The characteristic polynomial is

p(t) = t2 � (trA)t+ detA = t2 �
p
2t+ 1,

whose roots are
� =

1 + ip
2

and
1� ip

2
.

The geometric meaning of A is to rotate the plane through an angle of ⇡
4 . Thus, it comes as no surprise

that A has no real eigenvectors, as there can be no line through the origin that is unchanged after a
rotation.

Example 1.0.11. Consider the matrix

A =


1 1
�1 3

�

Its characteristic polynomial is p(t) = t2 � 4t + 4, so 2 is a repeated eigenvalue. Now let’s find the
corresponding eigenvectors:

N(A� 2I) = N

✓
�1 1
�1 1

�◆
= N

✓
1 �1
0 0

�◆

is one-dimensional, with basis {[1, 1]>}. A cannot be diagonalized since this is the only eigenvector and
there cannot be basis of eigenvectors.

AN “IFF" FOR DIAGONALIZABILITY*
Definition 1.0.12. Let � be an eigenvalue of a linear transformation. The algebraic multiplicity of � is its
multiplicity as a root of the characteristic polynomial p(t), i.e., the highest power of t� � dividing p(t). The
geometric multiplicity of � is the dimension of the �-eigenspace E(�).

Proposition 1.0.13. Let � be an eigenvalue of algebraic multiplicity m and geometric multiplicity d. Then
1  d  m.

Proof. Suppose � is an eigenvalue of the linear transformation T . Then d = dimE(�) � 1. Now choose
a basis v1, ...,vd for E(�) and extend it to a basis B={v1, ...,vn} for V (how?). Then the matrix for T with
respect to the basis B is

A =


�Id B
0 C

�
.

Then the determinant of A� tI satisfies

det(A� tI) = det((�� t)Id) det(C � tI) = (�� t)d det(C � tI).

Since the characteristic polynomial does not depend on the choice of basis, and since (t � �)m is the
largest pwoer of (t� �) dividing the characteristic polynomial, it follows that d  m.

Theorem 1.0.14. Let T : V ! V be a linear transformation. Let its distinct eigenvalues be �1, ...,�k and
assume these are all real numbers. Then T is diagonalizable if and only if the geometric multiplicity, di, of
each �i equals its algebraic multiplicity, mi.

SPECTRAL THEOREM
We now turn to the study of a large class of diagonalizable matrices, the symmetric matrices. Recall
that a square matrix A is symmetric when A = A>. Start with a general symmetric 2 matrix

A =


a b
b c

�
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whose characteristic polynomial is p(t) = t2 � (a+ c)t+ (ac� b2). By the quadratic formula, its eigenvalues
are

� =
(a+ c) +�

p
(a� c)2 + 4b2

2
.

The first thing we notice is that both eigenvalues are real. Moreover, the corresponding eigenvectors
are

v1 =


b

�1 � a

�
and v2 =


�2 � c

b

�

note that

v1 · v2 = b(�2 � c) + (�1 � a)b = 0,

so the eigenvectors are orthogonal. Since there is an orthogonal basis for R2 consisting of eigenvectors
of A, we have an orthonormal basis consisting of eigenvectors of A. That is, by an appropriate rotation
of the usual basis, we obtain a diagonalzing basis for A.

In general, we have the following important result.

Theorem 1.0.15. Let A be a symmetric n⇥ n matrix. Then

1. The eigenvalues of A are real.

2. There is an orthonormal basis for Rn consisting of eigenvectors of A. That is, there is an orthogonal
matrix Q so that Q�1AQ = ⇤ is diagonal.

Proof. 1. Let � = a+ bi be a eigenvalue of A, and consider the real matrix

S = (A� (a+ bi)I)(A� (a� bi)I) = (A� aI)2 + b2I.

Since

det(A� �I) = 0,

it follows that detS = 0. Thus S is singular, and then there is a nonzero vector x 2 Rn such that Sx = 0.
Since Sx = 0, then the dot product Sx · x = 0, which gives

0 = Sx · x = k(A� aI)xk 2 + b2 kxk 2.

Then it must be true that (A� aI)x = 0, and b = 0. Thus � = a is a real number.
2. Let �1 be one of the eigenvalues of A, and choose a unit vector q1 that is an eigenvector with

eigenvalue �1. Choose {v1, ...,vn} to be any orthonormal basis for ((q1))
?. Then the matrix for the

linear transformation with respect to the basis {q1,v2, ...,vn} is

B =

2

6664

�1 ⇤ . . . ⇤
0
... C
0

3

7775

for some (n� 1)⇥ (n� 1) matrix C and some entries ⇤. By the change-of-basis formula, we have

B = Q�1AQ = Q>AQ,

since Q is an orthogonal matrix. Therefore,

B> = (Q>AQ)T = Q>A>Q = Q>AQ = B.

Since B is symmetric, we have that the entries ⇤ are all 0 and that C is symmetric. This process can be
continued and we will end up with a orthonormal basis consisting of eigenvectors of A.
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HOMEWORK
1. Consider the linear transformation

T : Mn⇥n ! Mn⇥n

defined by
T (X) = X>.

Find its eigenvalues and the corresponding eigenspaces. (Hint: Consider the equation X> = �X)

2. Find the eigenvalues and eigenvectors of the following matrices.

(a)

1 5
2 4

�

(b)

0 1
1 0

�

(c)

2

4
3 1 0
0 1 2
0 1 2

3

5

3. Show that if � is an eigenvalue of the 2 ⇥ 2 matrix

a b
c d

�
and either b 6= 0 or � 6= a, then


b

�� a

�
is a

corresponding eigenvector.

4. Suppose A is an n⇥ n matrix with the property that A2 = A.

(a) Show that if � is an eigenvalue of A, then � = 0 or � = 1.

(b) Prove that A is diagonalizable.

5. Find orthogonal matrices that diagonalize each of the following symmetric matrices.

(a)

6 2
2 9

�

(b)

2

4
2 0 0
0 1 �1
0 �1 1

3

5

6. Show that if � is the only eigenvalue of a symmetric matrix A, then A = �I.
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