
Lecture 6: Determinant
Proposition 1.0.1. Let A be an n⇥ n matrix.

1. Let A0 be obtained from A by exchanging two rows. Then detA0 = � detA.

2. Let A0 be obtained from A by multiplying some row by the scalar c. Then detA0 = c detA.

3. Let A0 be obtained from A by adding a multiple of one row to another. Then detA0 = detA.

4. Last, det In = 1.

The following figure illustrates the property of 2,3 and 4.

Theorem 1.0.2. Let A be a square matrix. Then A is nonsingular iff detA 6= 0.

Proof. Suppose A is nonsingular. Then its reduced echelon form is In, which is obtained from a
sequence of row operations. If we keep track of the effect on the determinant, it is a multiplication of
det I and nonzero numbers. So detA 6= 0.

Conversely, suppose A is singular. Then its echelon form U has a row of zeroes, and then detU = 0.
It follows that detA = 0.

The following result is useful in computational and theoretical grounds.

Proposition 1.0.3. If A is an upper (lower) triangular n⇥ n matrix, then detA = a11a22...ann.

Proof. If aii = 0 for some i, then A is singular and so detA = 0, and the desired equality holds. Now
assume all the aii are nonzero. Let Ai be the ith row vector of A, as usual, and write Ai = aiiBi, where
the ith entry of Bi is 1. Then, letting B be the matrix with rows Bi and using property 2 of the
determinant, we have detA = a11...ann detB. Now B is an upper triangle matrix with 1’s on the diagonal,
so using property 3, we can use the pivot to clear out the upper entries without changing the
determinant. Thus, detB = det I = 1. And then we have detA = a11...ann.

There is also "product rule" for determinants.

Proposition 1.0.4. Let E be an elementary matrix, and let A be an arbitrary square matrix. Then

det(EA) = detE detA.

Theorem 1.0.5. Let A and B be n⇥ n matrices. Then

det(AB) = detA detB.

Proof. Suppose A is singular, so that there is some nontrivial linear relation among its row vectors:

c1A1 + ...+ cnAn = 0.

Then, multiplying by B on the right, we find that

c1(A1B) + ...+ cn(AnB) = 0,

from which we conclude that there is the same nontrivial linear relation among the row vectors of AB,
and so AB is singular as well. We can have that both detA = 0 and detAB = 0.
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Otherwise, if A is nonsingular, we know that we can write A as a product of elementary matrices. We
now apply the previous proposition twice. First, we have

detA = det(Em...E1) = detEm... detE1.

Then we have

detAB = det(Em...E1B) = detEm... detE1 detB = (detEm... detE1) detB = detA detB.

Corollary 1.0.6. If A is nonsingular, then det(A�1) = 1
detA .

Proof. From the equation AA
�1 = I, we have that

detA det(A�1) = 1

so
det(A�1) =

1

detA
.

Recall that B is similar to A if B = P
�1

AP for some invertible matrix P . A fundamental consequence
of the product rule is the fact that similar matrices have the same determinant.

det(P�1
AP ) = det(P�1) det(AP ) = det(P�1) detA detP = detA.

As a result, we can define determinant for linear transformation of finite dimensional vector space
T : V ! V . One writes down the matrix A for T with respect to any basis and defines detT = detA. The
change of basis formula tells us that any two matrices representing T are similar and hence, have the
same determinant. Furthermore detT has a nice geometric meaning: It gives the factor by which
signed volume is distorted under the mapping by T .

Proposition 1.0.7. Let A be a square matrix. Then

det(A>) = detA.

The third property of determinant can be rewritten as follows.
Suppose the ith row of the matrix A is written as a sum of two vectors, Ai = A

0
i +A

00
i . Let A0 denote the

matrix with A
0
i as its ith row and all other rows the same as those of A. Then

detA = detA0 + detA00
.

Lemma 1.0.8. If two rows of a matrix A are equal, then detA = 0.

Proposition 1.0.9. Let A be an n⇥ n matrix, and let B be the matrix obtained by adding a multiple of one
row of A to another. Then detB = detA.

Proof. Suppose B is obtained from A by replacing the i th row by its sum with c times the jth row; i.e.,

Bi = Ai + cAj

By the linearity in rows,
detB = detA+ detA0

,

where A
0
i = cAj and all the other rows of A0 are the corresponding rows of A. If we define the matrix A

00

by setting A
00
i = Aj and keeping all the other rows the same. Then property 2 guarantees that

detA0 = c detA00
.

But two rows of the matrix A
00 are identical, so by previous lemma, detA00 = 0. Therefore, detB = detA.
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COFACTORS AND CRAMER’S RULE
Given the 3⇥ 3 matrix

A =

2

4
a11 a12 a13

a21 a22 a23

a31 a32 a33

3

5

Use the row linearity in the first row to calculate

detA = a11 det

2

4
1 0 0
a21 a22 a23

a31 a32 a33

3

5+ a12 det

2

4
0 1 0
a21 a22 a23

a31 a32 a33

3

5+ a13 det

2

4
0 0 1
a21 a22 a23

a31 a32 a33

3

5

= a11 det

2

4
1 0 0
0 a22 a23

0 a32 a33

3

5+ a12 det

2

664

0 1 0
a21 0 a23

a31 0 a23

a31 0 a33

3

775+ a13 det

2

4
0 0 1
a21 a22 0
a31 a32 0

3

5

The preceding calculations suggest a general recursive formula. Given an n ⇥ n matrix A with n � 2,
denote by Aij the (n � 1) ⇥ (n � 1) matrix obtained by deleting the ith row and the jth column from A.
Define the ijth cofactor of the matrix to be

Cij = (�1)i+j detAij .

Why (�1)i+j?. To move the ith row to the top, without otherwise changing the order of the rows, requires
switching pairs of rows i � 1 times; this gives a sign of (�1)i�1. We then alternate signs as we proceed
from column to column, the jth column contributing a sign of (�1)j�1. Thus, in the expansion, detAij

appears with a factor of (�1)i�1(�1)j�1 = (�1)i+j.

Proposition 1.0.10. Let A be an n⇥ n matrix. Then for any fixed i, we have

detA =
nX

j=1

aijCij .

Complexity. Despite expansion in cofactors is an important theoretical tool, it is a computational
nightmare. Computation complexity of calculating an n ⇥ n determinant by expanding in cofactors
requires approximately n! multiplications and additions.

We conclude this section with a few classic formulas. the first is particularly useful for solving 2 ⇥ 2
systems of equations and maybe useful for larger n.

Proposition 1.0.11 (Cramer’s Rule.). Let A be a nonsingular n ⇥ n matrix, and let b 2 Rn. Then the ith
coordinate of the vector x solving Ax = b is

xi =
detBi

detA
,

where Bi is the matrix obtained by replacing the ith column of A by the vector b.

This result’s geometric interpretation is clear as well, if we can use the special case of orthonormal
basis as an example. The picture indicates that the area of parallelogram spanned by (e1,b) equals c2

times the area of the square spanned by (e1, e2), and the area of the parallelogram spanned by (b, e2)
equals c1 times the area of the square spanned by (e1, e2). Formally, we can obtain Cramer’s rule by
comparing the areas of the red framed parallelograms and the unit square, i.e.,

c1 =
Area(b, e2)
Area(e1, e2)

, c2 =
Area(e1,b)
Area(e1, e2)
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Proof. We calculate the determinant of the matrix obtained by replacing the ith column of A by
b = Ax = x1a1 + ...+ xnan:

detBi = det

2

4
| | |
a1 . . . x1a1 + ...+ xnan . . . an
| | |

3

5 = det

2

4
| | |
a1 . . . xiai . . . an
| | |

3

5 = xi detA.

Proposition 1.0.12. Let A be a nonsingular matrix, and let C = [Cij ] be the matrix of its cofactors. Then

A
�1 =

1

detA
C

>
.

HOMEWORK
1. Let A be an n⇥ n matrix. Show that

det

2

6664

1 0 . . . 0
0
... A

0

3

7775
= detA

2. Show that

det

2

4
1 1 1
b c d

b
2

c
2

d
2

3

5 = (c� b)(d� b)(d� c)

3. Evaluate

det

2

6664

1 t1 t
2
1 . . . t

k
1

1 t2 t
2
2 . . . t

k
2

...
...

...
. . .

...
1 tk+1 t

2
k+1 . . . t

k
k+1

3

7775

4. Suppose A 2 Mk⇥k, B 2 Mk⇥l, and D 2 Ml⇥l. Prove that

det


A B

O D

�
= detA detD

5. Suppose C 2 Ml⇥k. Prove that if A is invertible, then

det


A B

C D

�
= detA det(D � CA

�1
B).

6. If we assume that k = l and AC = CA, then

det


A B

C D

�
= det(AD � CB).
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