Lecture 5: Linear Transformations and Change of Basis

Definition 1.0.1. Let *V* be a finite-dimensional vector space and let $T : V \to V$ be a linear transformation. Let $\mathcal{B} = \{\mathbf{v}_1, ..., \mathbf{v}_n\}$ be an ordered basis for *V*. Define numbers a_{ij} , i = 1, ..., n, j = 1, ..., n, by

$$T(\mathbf{v}_j) = a_{1j}\mathbf{v}_1 + a_{2j}\mathbf{v}_2 + \dots + a_{nj}\mathbf{v}_n.$$

Then we define $A = [a_{ij}]$ to be the matrix for T with respect to \mathcal{B} , also denote $[T]_{\mathcal{B}}$. As before we have

$$A = \begin{bmatrix} | & | & \dots & | \\ T(\mathbf{v}_1) & T(\mathbf{v}_2) & \dots & T(\mathbf{v}_n) \\ | & | & \dots & | \end{bmatrix},$$

where the column vectors are the coordinates of the vectors with respect to the basis \mathcal{B} .

Given a finite-dimensional vector space *V* and an ordered basis $\mathcal{B}{v_1, ..., v_n}$ for *V*, we can define a linear transformation

$$C_{\mathcal{B}}: V \to \mathbb{R}^n$$

which assigns to each vector v its vector of coordinates with respect to the basis \mathcal{B} . That is

$$C_{\mathcal{B}}(c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_n\mathbf{v}_n) = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}.$$

When \mathcal{B} is the standard basis \mathcal{E} for \mathbb{R}^n , this is

$$C_{\mathcal{E}}(\mathbf{x}) = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

With this notation, we can write $[T]_{\mathcal{B}}$ in terms of the mapping $C_{\mathcal{B}}$.

$$[T]_{\mathcal{B}} = \begin{bmatrix} | & | & | \\ C_{\mathcal{B}}(T(\mathbf{v}_1)) & C_{\mathcal{B}}(T(\mathbf{v}_2)) & \dots & C_{\mathcal{B}}(T(\mathbf{v}_n)) \\ | & | & | \end{bmatrix}$$

Throughout this notes, we will use $\mathcal{E} = \{\mathbf{e}_1, ..., \mathbf{e}_n\}$ for standard basis.

Suppose that we have a linear transformation $T: V \to V$ and two ordered bases $\mathcal{B} = {\mathbf{v}_1, ..., \mathbf{v}_n}$ and $\mathcal{B}' = {\mathbf{v}'_1, ..., \mathbf{v}'_n}$ for *V*. Let $A_{\text{old}} = [T]_{\mathcal{B}}$ be the matrix for *T* with respect to the "old " basis \mathcal{B} , and let $A_{\text{new}} = [T]_{\mathcal{B}'}$ be the matrix for *T* with respect to the "new" basis \mathcal{B}' . The fundamental question is to compute A_{new} if we know A_{old} . Define the *change of basis matrix P* to be the matrix whose column vectors are the coordinates of the new basis vectors with respect to the old basis

$$\mathbf{v}_j' = p_{1j}\mathbf{v}_1 + p_{2j}\mathbf{v}_2 + \dots + p_{nj}\mathbf{v}_n.$$

When \mathcal{B} is the standard basis, we have

$$P = \left[\begin{array}{ccc} | & | & | \\ \mathbf{v}_1' & \mathbf{v}_2' & \dots & \mathbf{v}_n' \\ | & | & | \end{array} \right]$$

Theorem 1.0.2 (Change of basis formula, standard basis). Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation with standard matrix $[T]_{\mathcal{E}}$. Let $\mathcal{B} = \{\mathbf{v}_1, ..., \mathbf{v}_n\}$ be basis for \mathbb{R}^n and let $[T]_{\mathcal{B}}$ be the matrix for T with respect to \mathcal{B} . Let P be the $n \times n$ matrix whose columns are given by the vectors $\mathbf{v}_1, ..., \mathbf{v}_n$. Then we have

$$[T]_{\mathcal{E}}P = P[T]_{\mathcal{B}}$$

CONTENTS

Proof. The *j*th column of *P* is he vector \mathbf{v}_j , i.e., its coordinate vector $C_{\mathcal{E}}(\mathbf{v}_j)$ with respect to the standard basis. Therefore, the *j*th column vector of the matrix product $[T]_{\mathcal{E}}P$ is the standard coordinate vector of $T(\mathbf{v}_j)$. On the other hand, the *j*th column of $[T]_{\mathcal{B}}$ is the coordinate vector, $C_{\mathcal{B}}(T(\mathbf{v}_j))$, of $T(\mathbf{v}_j)$ with respect to the basis \mathcal{B} . If the *j*th column of $[T]_{\mathcal{B}}$ is $(a_1, ..., a_n)^{\top}$, then $T(\mathbf{v}_j) = a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + ... + a_n\mathbf{v}_n$. But we also know that

$$P\begin{bmatrix}a_1\\a_2\\\vdots\\a_n\end{bmatrix} = a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \dots + a_n\mathbf{v}_n.$$

That is, the *j*th column of $P[T]_{\mathcal{B}}$ is exactly the linear combination of the columns of *P* needed to give the standard coordinate vector of $T(\mathbf{v}_j)$.

Theorem 1.0.3 (Change of basis formula, general basis). Let $T : V \to V$ be a linear transformation, and let $\mathcal{B} = \{\mathbf{v}_1, ..., \mathbf{v}_n\}$ and $\mathcal{B}' = \{\mathbf{v}'_1, ..., \mathbf{v}'_n\}$ be ordered bases for V. If $[T]_{\mathcal{B}}$ and $[T]_{\mathcal{B}'}$ are the matrices for T with respect to the respective bases and P is the change of basis matrix (whose columns are the coordinates of the new basis vectors with respect to the old basis), then we have

$$[T]_{\mathcal{B}'} = P^{-1}[T]_{\mathcal{B}}P$$

Definition 1.0.4. Two matrices A and B are called similar if $B = P^{-1}AP$ for some invertible matrix.

Theorem tells us that any two matrices representing the same linear map $T: V \to V$ are similar.

Proof. Given a vector $\mathbf{v} \in V$, denote by x and x', respectively, its coordinate vectors with respect to the bases \mathcal{B} and \mathcal{B}' . We need to prove the relation between x and x':

$$\mathbf{x} = P\mathbf{x}'$$

Using the equations

$$\mathbf{v} = \sum_{i=1}^{n} x_i \mathbf{v}_i$$

and

$$\mathbf{v} = \sum_{j=1}^{n} x'_j \mathbf{v}'_j = \sum_{j=1}^{n} x'_j \left(\sum_{i=1}^{n} p_{ij} \mathbf{v}_i \right) = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} p_{ij} x'_j \right) \mathbf{v}_i$$

so we have

$$x_i = \sum_{j=1}^n p_{ij} x'_j.$$

If $T(\mathbf{v}) = \mathbf{w}$, let \mathbf{y} and \mathbf{y}' denote the coordinate vectors of \mathbf{w} with respect to bases \mathcal{B} and \mathcal{B}' . Now compare the equations

$$\mathbf{y}' = [T]_{\mathcal{B}'}\mathbf{x}'$$
 and $\mathbf{y} = [T]_{\mathcal{B}}\mathbf{x}$,

using

 $\mathbf{y} = \mathbf{y}'$ and $\mathbf{x} = P\mathbf{x}'$

On one hand, we have

$$\mathbf{y} = P\mathbf{y}' = P([T]_{\mathcal{B}'}\mathbf{x}') = (P[T]_{\mathcal{B}'}\mathbf{x}')$$

and on the other hand,

$$\mathbf{y} = [T]_{\mathcal{B}}\mathbf{x} = [T]_{\mathcal{B}}(P\mathbf{x}') = ([T]_{\mathcal{B}}P)\mathbf{x}'$$

from which we have that

$$[T]_{\mathcal{B}}P = P[T]_{\mathcal{B}'}$$
 or equivalently $[T]_{\mathcal{B}'} = P^{-1}[T]_{\mathcal{B}}P$

$$A = [T] = \begin{bmatrix} 3 & 1 \\ 2 & 2 \end{bmatrix}$$

of a linear transformation T on \mathbb{R}^2 with respect to the standard basis. Calculate the matrix $[T]_{\mathcal{B}'}$ with respect to the new basis $\mathcal{B}' = \{\mathbf{v}_1, \mathbf{v}_2\}$, where

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 and $\mathbf{v}_2 = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$

The change of basis matrix is

$$P = \begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix} \text{ and } P^{-1} = \frac{1}{3} \begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix}$$

Then

$$[T]_{\mathcal{B}'} = P^{-1}AP = \begin{bmatrix} 4 & 0\\ 0 & 1 \end{bmatrix}$$

ORTHOGONALITY

Definition 1.0.6. Let $\mathbf{v}_1, ..., \mathbf{v}_k \in \mathbb{R}^n$. We say $\{\mathbf{v}_1, ..., \mathbf{v}_k\}$ is an orthogonal set of vetors provided $\mathbf{v}_i \cdot \mathbf{v}_j = 0$ whenever $i \neq j$. We say $\{\mathbf{v}_1, ..., \mathbf{v}_k\}$ is an orthogonal basis for a subspace V if $\{\mathbf{v}_1, ..., \mathbf{v}_k\}$ is both a basis for V and an orthogonal set. Moreover, we say $\{\mathbf{v}_1, ..., \mathbf{v}_k\}$ is an orthonormal basis for V if it is an orthogonal basis consisting of unit vectors.

The first reason that orthogonal sets of vectors are important is the following:

Proposition 1.0.7. Let $\mathbf{v}_1, ..., \mathbf{v}_k \in \mathbb{R}^m$. If $\{\mathbf{v}_1, ..., \mathbf{v}_k\}$ is an orthogonal set of nonzero vectors, then $\{\mathbf{v}_1, ..., \mathbf{v}_k\}$ is linearly independent.

Proof. Suppose

$$c_1\mathbf{v}_1 + \ldots + c_k\mathbf{v}_k = \mathbf{0}.$$

We need to show that $c_1 = c_2 = ... = c_k = 0$. For any i = 1, ..., k, we take the dot product of this equation with \mathbf{v}_i , obtain

$$c_1(\mathbf{v}_1 \cdot \mathbf{v}_i) + \dots + c_k(\mathbf{v}_k \cdot \mathbf{v}_i) = 0.$$

Since \mathbf{v}_i is assumed to be orthogonal to all the other $vecv_j$'s, i.e.,

$$\mathbf{v}_1\cdot\mathbf{v}_i=0,$$

then we have

$$c_i \|\mathbf{v}_i\|^2 = 0.$$

Since $\mathbf{v}_i \neq \mathbf{0}$, it follows that $c_i = 0$. Repeat this argument for all 1, ..., k, we have $c_1 = ... c_k = 0$.

Lemma 1.0.8. Suppose $\{\mathbf{v}_1, ..., \mathbf{v}_k\}$ is a basis for V. Then the equation

$$\mathbf{x} = \sum_{i=1}^{k} \operatorname{proj}_{\mathbf{v}_{i}} \mathbf{x} = \sum_{i=1}^{k} \frac{\mathbf{x}_{i} \cdot \mathbf{v}_{i}}{\|\mathbf{v}_{i}\|^{2}} \mathbf{v}_{i}$$

holds for all $\mathbf{x} \in V$ if and only if $\{\mathbf{v}_1, ..., \mathbf{v}_k\}$ is an orthogonal basis for V.

Proof. Suppose $\{v_1, ..., v_k\}$ is an orthogonal basis for V. Then there are scalars $c_1, ..., c_k$ so that

$$\mathbf{x} = c_1 \mathbf{v}_1 + \dots + c_k \mathbf{v}_k.$$

We take the dot product of this equation with v_i :

$$\mathbf{x} \cdot \mathbf{v}_i = c_1(\mathbf{v} \cdot \mathbf{v}_i) + \dots + c_k(\mathbf{v}_k \cdot \mathbf{v}_i) = c_i \|\mathbf{v}_i\|^2,$$

and so

$$c_i = \frac{\mathbf{x} \cdot \mathbf{v}_i}{\|\mathbf{v}_i\|^2}$$

CONTENTS

Conversely, suppose that every vector x is the sum of its projections on $v_1, ..., v_k$. Consider v_1 for example, since v_1 is a vector in V, thus by assumption, it naturally satisfies

$$\mathbf{v}_1 = \sum_{i=1}^k \operatorname{proj}_{\mathbf{v}_i} \mathbf{v}_1 = \sum_{i=1}^k \frac{\mathbf{v}_1 \cdot \mathbf{v}_i}{\|\mathbf{v}_i\|^2} \mathbf{v}_i.$$

On the other hand, $v_1, ..., v_k$ form a basis of *V* as a default setting, so each vector has a unique expression in terms of v_i 's. So we alve

$$\mathbf{v}_1 \cdot \mathbf{v}_i = 0$$
 for all $i = 2, ..., k$.

A similar argument shows that $\mathbf{v}_i \cdot \mathbf{v}_j = 0$ for all $i \neq j$, and the proof completes.

We recall that whenever $\{v_1, ..., v_k\}$ is a basis for *V*, every vector $\mathbf{x} \in V$ can be written uniquely as a linear combination

$$\mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_k \mathbf{v}_k,$$

where the coefficients c_i 's are called the *coordinates* of x with repsect to the basis $\{v_1, ..., v_k\}$. When $\{v_1, ..., v_k\}$ forms an orthogonal basis for *V*, the dot product gives the coordinates of x.

Proposition 1.0.9. Let $V \subset \mathbb{R}^m$ be a k-dimensional subspace. The equation

$$\operatorname{proj}_{V} \mathbf{b} = \sum_{i=1}^{k} \operatorname{proj}_{\mathbf{v}_{i}} \mathbf{b} = \sum_{i=1}^{k} \frac{\mathbf{b} \cdot \mathbf{v}_{i}}{\|\mathbf{v}_{i}\|^{2}} \mathbf{v}_{i}$$

holds for all $\mathbf{b} \in \mathbb{R}^m$ if and only if $\{\mathbf{v}_1, ..., \mathbf{v}_k\}$ is an orthogonal basis for *V*.

Proof. Assume $\{\mathbf{v}_1, ..., \mathbf{v}_k\}$ is an orthogonal basis for *V* and let $\mathbf{v} \in \mathbb{R}^m$. Write

$$\mathbf{b} = \mathbf{p} + (\mathbf{b} - \mathbf{p}).$$

where

$$\mathbf{p} = \operatorname{proj}_V \mathbf{b}.$$

Then, since $\mathbf{p} \in V$, it follows that

$$\mathbf{p} = \sum_{i=1}^{k} \frac{\mathbf{p} \cdot \mathbf{v}_i}{\|\mathbf{v}_i\|^2} \mathbf{v}_i.$$

Moreover, for i = 1, ..., k, we have $\mathbf{b} \cdot \mathbf{v}_i = \mathbf{p} \cdot \mathbf{v}_i$, since $\mathbf{b} - \mathbf{p} \in V^{\perp}$. Thus

$$\operatorname{proj}_{V} \mathbf{b} = \mathbf{p} = \sum_{i=1}^{k} \operatorname{proj}_{\mathbf{v}_{i}} \mathbf{p} = \sum_{i=1}^{k} \frac{\mathbf{p} \cdot \mathbf{v}_{i}}{\|\mathbf{v}_{i}\|^{2}} \mathbf{v}_{i} = \sum_{i=1}^{k} \frac{\mathbf{b} \cdot \mathbf{v}_{i}}{\|\mathbf{v}_{i}\|^{2}} \mathbf{v}_{i} = \sum_{i=1}^{k} \operatorname{proj}_{\mathbf{v}_{i}} \mathbf{b}.$$

Conversely, suppose

$$\operatorname{proj}_V \mathbf{b} = \sum_{i=1}^k \operatorname{proj}_{\mathbf{v}_i} \mathbf{b}$$

for all $\mathbf{b} \in \mathbb{R}^m$. In particular, when $\mathbf{v} \in V$, have that $\mathbf{b} = \operatorname{proj}_V \mathbf{b}$ can be written as a linear combination of $\mathbf{v}_1, ..., \mathbf{v}_k$, so these vectors span *V*. Since *V* is *k*-dimensional, $\mathbf{v}_1, ..., \mathbf{v}_k$ form a basis for *V*. The previous lemma shows that it must be an orthogonal basis.

We next develop an algorithm for transforming a given basis $\{v_1, ..., v_k\}$ for a subspace into an orthogonal basis $\{w_1, ..., w_k\}$. The idea is the following. We set

$$\mathbf{w}_1 = \mathbf{v}_1.$$

If v_2 is orthogonal to w_1 , then we set $w_2 = v_2$. If v_2 is not orthogonal to w_1 , then we set

$$\mathbf{w}_{=}\mathbf{v}_{2} - \operatorname{proj}_{\mathbf{w}_{1}}\mathbf{v}_{2} = \mathbf{v}_{2} - \frac{\mathbf{v}_{2} \cdot \mathbf{w}_{1}}{\|\mathbf{w}_{1}\|^{2}}\mathbf{w}_{1}.$$

Then so far by construction, w_1 and w_2 are orthogonal and $\operatorname{Span}(w_1, w_2) \subset \operatorname{Span}(v_1, v_2)$. Since $w_2 \neq 0$, $\{w_1, w_2\}$ must be linearly independent and therefore give a basis for $\operatorname{Span}(v_1, v_2)$. We continue, replacing v_3 by its part orthogonal to the plane spanned by w_1 and w_2 :

$$\mathbf{w}_3 = \mathbf{v}_3 - \operatorname{proj}_{\operatorname{Span}(\mathbf{w}_1, \mathbf{w}_2)} \mathbf{v}_3 = \mathbf{v}_3 - \operatorname{proj}_{\mathbf{w}_1} \mathbf{v}_3 - \operatorname{proj}_{\mathbf{w}_2} \mathbf{v}_3 = \mathbf{v}_3 - \frac{\mathbf{v}_3 \cdot \mathbf{w}_1}{\|\mathbf{w}_1\|^2} \mathbf{w}_1 - \frac{\mathbf{v}_3 \cdot \mathbf{w}_2}{\|\mathbf{w}_2\|^2} \mathbf{w}_2.$$

The same discussion can be continued as well. Thus we end up with the following theorem formalizing this process of finding orthogonal basis given an arbitary basis.

CONTENT

Gram-Schmidt process.

Theorem 1.0.10. Given a basis $\{v_1, ..., v_k\}$ for an inner product space *V*, we obtain an orthogonal basis $\{w_1, ..., w_k\}$ for *V* as follows:

$$\mathbf{w}_1 = \mathbf{v}_1$$
$$\mathbf{w}_2 = \mathbf{v}_2 - \frac{\mathbf{v}_2 \cdot \mathbf{w}_1}{\|\mathbf{w}_1\|^2} \mathbf{w}_2$$

and, assuming $\mathbf{w}_1, ..., \mathbf{w}_i$ have been defined,

$$\mathbf{w}_{j+1} = \mathbf{v}_{j+1} - \frac{\mathbf{v}_{j+1} \cdot \mathbf{w}_1}{\|\mathbf{w}_1\|^2} \mathbf{w}_1 - \frac{\mathbf{v}_{j+1} \cdot \mathbf{w}_2}{\|\mathbf{w}_2\|^2} \mathbf{w}_2 - \dots - \frac{\mathbf{v}_{j+1} \cdot \mathbf{w}_j}{\|\mathbf{w}_j\|^2} \mathbf{w}_j$$

$$\mathbf{w}_k = \mathbf{v}_k - \frac{\mathbf{v}_k \cdot \mathbf{w}_1}{\|\mathbf{w}_1\|^2} \mathbf{w}_1 - \frac{\mathbf{v}_k \cdot \mathbf{w}_2}{\|\mathbf{w}_2\|^2} \mathbf{w}_2 - \dots - \frac{\mathbf{v}_k \cdot \mathbf{w}_{k-1}}{\|\mathbf{w}_{k-1}\|^2} \mathbf{w}_{k-1}.$$

If we so desire, we can arrange for an orthonormal basis by dividing each of $w_1, ..., w_k$ by its respective length:

$$\mathbf{q}_1 = rac{\mathbf{w}_1}{\|\mathbf{w}_1\|}, \ \ \mathbf{q}_2 = rac{\mathbf{w}_2}{\|\mathbf{w}_2\|}, \ \ \dots \ \ \mathbf{q}_k = rac{\mathbf{w}_k}{\|\mathbf{w}_k\|}$$

Example 1.0.11. Let $\mathbf{v}_1 = (1, 1, 1, 1)^\top$, $\mathbf{v}_2 = (3, 1, -1, 1)^\top$ and $\mathbf{v}_3 = (1, 1, 3, 3)$. Use Gram-Schmit process to give an orthogonal basis for $V = \text{Span}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3) \subset \mathbb{R}^4$. We can take

$$\mathbf{w}_{1} = \mathbf{v}_{1} = (1, 1, 1, 1);$$
$$\mathbf{w}_{2} = \mathbf{v}_{2} - \frac{\mathbf{v}_{2} \cdot \mathbf{w}_{1}}{\|\mathbf{w}_{1}\|^{2}} \mathbf{w}_{1} = (2, 0, -2, 0)$$
$$\mathbf{w}_{3} = \mathbf{v}_{3} - \frac{\mathbf{v}_{3} \cdot \mathbf{w}_{1}}{\|\mathbf{w}_{1}\|^{2}} \mathbf{w}_{1} - \frac{\mathbf{v}_{3} \cdot \mathbf{w}_{2}}{\|\mathbf{w}_{2}\|^{2}} \mathbf{w}_{2} = (0, -1, 0, 1)$$

We can furthermore make them a orthonormal basis by normalization with respect to norms.

HOMEWORK

- 1. Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation given by reflecting across the plane $x_1 2x_2 + 2x_3 = 0$. Use the change-of-basis formula to find its standard matrix.
- 2. Let $V \subset \mathbb{R}^3$ be the subspace defined by

$$V = \{ (x_1, x_2, x_3)^{\top} : x_1 - x_2 + x_3 = 0 \}.$$

Find the standard matrix for each of the following linear transformations:

- (a) projection on V
- (b) reflection across V
- (c) rotation of V through angle $\pi/6$

3. Let

$$\mathbf{a} = \begin{bmatrix} \sin \phi \cos \theta \\ \sin \phi \sin \theta \\ \cos \phi \end{bmatrix} \quad 0 \le \phi \le \frac{\pi}{2}.$$

Prove that the intersection of the circular cylinder $x_1^2 + x_2^2 = 1$ with the plane $\mathbf{a} \cdot \mathbf{x} = 0$ is an ellipse. (Hint: consider the new basis $\mathbf{v}_1 = (-\sin\theta, \cos\theta, 0)^{\top}, \mathbf{v}_2 = (-\cos\phi\cos\theta, \sin\phi)^{\top}, \mathbf{v}_3 = \mathbf{a}.$)

- 4. Describe the projection of the cylindrical region $x_1^2 + x_2^2 = 1$, $-h \le x_3 \le h$ onto the general plane $\mathbf{a} \cdot \mathbf{x} = 0$.
- 5. Let $V = \text{Span}((2, 1, 0, -2)^{\top}, (3, 3, 1, 0)^{\top}) \subset \mathbb{R}^4$.
 - (a) Find an orthogonal basis for V.

- (b) Use your answer to part 1 to find the projection of $\mathbf{b} = (0, 4, -4, -7)^{\top}$ onto V.
- (c) Use your answer to part 1 to find the projection matrix P_V .
- 6. (Direct sums) Let $W_1, ..., W_k$ be subspaces of a vector space V, such that

 $V = W_1 + \ldots + W_k.$

Assume that

$$W_1 \cap W_2 = \{\mathbf{0}\}$$
$$(W_1 + W_2) \cap W_3 = \{\mathbf{0}\}$$
$$\vdots$$
$$(W_1 + W_2 + \dots + W_{k-1}) \cap W_k = \{\mathbf{0}\}.$$

Prove that V is the direct sum of the subspaces $W_1, ..., W_k$.