
Lecture 5: Linear Transformations and
Change of Basis

Definition 1.0.1. Let V be a finite-dimensional vector space and let T : V ! V be a linear transformation.
Let B = {v1, ...,vn} be an ordered basis for V . Define numbers aij , i = 1, ..., n, j = 1, ..., n, by

T (vj) = a1jv1 + a2jv2 + ...+ anjvn.

Then we define A = [aij ] to be the matrix for T with respect to B, also denote [T ]B. As before we have

A =

2

4
| | . . . |

T (v1) T (v2) . . . T (vn)
| | . . . |

3

5 ,

where the column vectors are the coordinates of the vectors with respect to the basis B.

Given a finite-dimensional vector space V and an ordered basis B{v1, ...,vn} for V , we can define a
linear transformation

CB : V ! Rn,

which assigns to each vector v its vector of coordinates with respect to the basis B. That is

CB(c1v1 + c2v2 + ...+ cnvn) =

2

64
c1
...
cn

3

75 .

When B is the standard basis E for Rn, this is

CE(x) =

2

64
x1
...
xn

3

75

With this notation, we can write [T ]B in terms of the mapping CB.

[T ]B =

2

4
| | |

CB(T (v1)) CB(T (v2)) . . . CB(T (vn))
| | |

3

5

Throughout this notes, we will use E = {e1, ..., en} for standard basis.
Suppose that we have a linear transformation T : V ! V and two ordered bases B = {v1, ...,vn} and

B0 = {v0
1, ...,v

0
n} for V . Let Aold = [T ]B be the matrix for T with respect to the “old " basis B, and let

Anew = [T ]B0 be the matrix for T with respect to the “new" basis B0. The fundamental question is to
compute Anew if we know Aold. Define the change of basis matrix P to be the matrix whose column
vectors are the coordinates of the new basis vectors with respect to the old basis

v0
j = p1jv1 + p2jv2 + ...+ pnjvn.

When B is the standard basis, we have

P =

2

4
| | |
v0
1 v0

2 . . . v0
n

| | |

3

5

Theorem 1.0.2 (Change of basis formula, standard basis). Let T : Rn ! Rn be a linear transformation
with standard matrix [T ]E . Let B = {v1, ...,vn} be basis for Rn and let [T ]B be the matrix for T with respect
to B. Let P be the n⇥ n matrix whose columns are given by the vectors v1, ...,vn. Then we have

[T ]EP = P [T ]B.
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Proof. The jth column of P is he vector vj, i.e., its coordinate vector CE(vj) with respect to the standard
basis. Therefore, the jth column vector of the matrix product [T ]EP is the standard coordinate vector of
T (vj). On the other hand, the jth column of [T ]B is the coordinate vector, CB(T (vj)), of T (vj) with
respect to the basis B. If the jth column of [T ]B is (a1, ..., an)>, then T (vj) = a1v1 + a2v2 + ...+ anvn. But
we also know that

P

2

6664

a1
a2
...
an

3

7775
= a1v1 + a2v2 + ...+ anvn.

That is, the jth column of P [T ]B is exactly the linear combination of the columns of P needed to give
the standard coordinate vector of T (vj).

Theorem 1.0.3 (Change of basis formula, general basis). Let T : V ! V be a linear transformation, and
let B = {v1, ...,vn} and B0 = {v0

1, ...,v
0
n} be ordered bases for V . If [T ]B and [T ]B0 are the matrices for T

with respect to the respective bases and P is the change of basis matrix (whose columns are the
coordinates of the new basis vectors with respect to the old basis), then we have

[T ]B0 = P�1[T ]BP.

Definition 1.0.4. Two matrices A and B are called similar if B = P�1AP for some invertible matrix.

Theorem tells us that any two matrices representing the same linear map T : V ! V are similar.

Proof. Given a vector v 2 V , denote by x and x0, respectively, its coordinate vectors with respect to the
bases B and B0. We need to prove the relation between x and x0:

x = Px0

Using the equations

v =
nX

i=1

xivi

and

v =
nX

j=1

x0
jv

0
j =

nX

j=1

x0
j

 
nX

i=1

pijvi

!
=

nX

i=1

0

@
nX

j=1

pijx
0
j

1

Avi,

so we have

xi =
nX

j=1

pijx
0
j .

If T (v) = w, let y and y0 denote the coordinate vectors of w with respect to bases B and B0. Now
compare the equations

y0 = [T ]B0x0 and y = [T ]Bx,

using
y = y0 and x = Px0

On one hand, we have
y = Py0 = P ([T ]B0x0) = (P [T ]B0x0),

and on the other hand,
y = [T ]Bx = [T ]B(Px0) = ([T ]BP )x0,

from which we have that

[T ]BP = P [T ]B0 or equivalently [T ]B0 = P�1[T ]BP.
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Example 1.0.5. Given the matrix

A = [T ] =


3 1
2 2

�

of a linear transformation T on R2 with respect to the standard basis. Calculate the matrix [T ]B0 with
respect to the new basis B0 = {v1,v2}, where

v1 =


1
1

�
and v2 =


�1
2

�

The change of basis matrix is

P =


1 �1
1 2

�
and P�1 =

1

3


2 1
�1 1

�

Then

[T ]B0 = P�1AP =


4 0
0 1

�

ORTHOGONALITY
Definition 1.0.6. Let v1, ...,vk 2 Rn. We say {v1, ...,vk} is an orthogonal set of vetors provided vi · vj = 0
whenever i 6= j. We say {v1, ...,vk} is an orthogonal basis for a subspace V if {v1, ...,vk} is both a basis
for V and an orthogonal set. Moreover, we say {v1, ...,vk} is an orthonormal basis for V if it is an
orthogonal basis consisting of unit vectors.

The first reason that orthogonal sets of vectors are important is the following:

Proposition 1.0.7. Let v1, ...,vk 2 Rm. If {v1, ...,vk} is an orthogonal set of nonzero vectors, then
{v1, ...,vk} is linearly indepdent.

Proof. Suppose
c1v1 + ...+ ckvk = 0.

We need to show that c1 = c2 = ... = ck = 0. For any i = 1, ..., k, we take the dot product of this equation
with vi, obtain

c1(v1 · vi) + ...+ ck(vk · vi) = 0.

Since vi is assumed to be orthogonal to all the other vecvj ’s, i.e.,

v1 · vi = 0,

then we have
ci kvik 2 = 0.

Since vi 6= 0, it follows that ci = 0. Repeat this argument for all 1, ..., k, we have c1 = ...ck = 0.

Lemma 1.0.8. Suppose {v1, ...,vk} is a basis for V . Then the equation

x =
kX

i=1

projvi
x =

kX

i=1

xi · vi

kvik 2
vi

holds for all x 2 V if and only if {v1, ...,vk} is an orthogonal basis for V .

Proof. Suppose {v1, ...,vk} is an orthogonal basis for V . Then there are scalars c1, ..., ck so that

x = c1v1 + ...+ ckvk.

We take the dot product of this equation with vi:

x · vi = c1(v · vi) + ...+ ck(vk · vi) = ci kvik 2,

and so
ci =

x · vi

kvik 2
.
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Conversely, suppose that every vector x is the sum of its projections on v1, ...,vk. Consider v1 for
example, since v1 is a vector in V , thus by assumption, it naturally satisfies

v1 =
kX

i=1

projvi
v1 =

kX

i=1

v1 · vi

kvik 2
vi.

On the other hand, v1, ...,vk form a basis of V as a default setting, so each vector has a unique
expression in terms of vi’s. So we ahve

v1 · vi = 0 for all i = 2, ..., k.

A similar argument shows that vi · vj = 0 for all i 6= j, and the proof completes.

We recall that whenever {v1, ...,vk} is a basis for V , every vector x 2 V can be written uniquely as a
linear combination

x = c1v1 + c2v2 + ...+ ckvk,

where the coefficients ci’s are called the coordinates of x with repsect to the basis {v1, ...,vk}. When
{v1, ...,vk} forms an orthogonal basis for V , the dot product gives the coordinates of x.

Proposition 1.0.9. Let V ⇢ Rm be a k-dimensional subspace. The equation

projV b =
kX

i=1

projvi
b =

kX

i=1

b · vi

kvik 2
vi

holds for all b 2 Rm if and only if {v1, ...,vk} is an orthogonal basis for V .

Proof. Assume {v1, ...,vk} is an orthogonal basis for V and let v 2 Rm. Write

b = p+ (b� p),

where
p = projV b.

Then, since p 2 V , it follows that

p =
kX

i=1

p · vi

kvik 2
vi.

Moreover, for i = 1, ..., k, we have b · vi = p · vi, since b� p 2 V ?. Thus

projV b = p =
kX

i=1

projvi
p =

kX

i=1

p · vi

kvik 2
vi =

kX

i=1

b · vi

kvik 2
vi =

kX

i=1

projvi
b.

Conversely, suppose

projV b =
kX

i=1

projvi
b

for all b 2 Rm. In particular, when v 2 V , have that b = projV b can be written as a linear combination of
v1, ...,vk, so these vectors span V . Since V is k-dimensional, v1, ...,vk form a basis for V . The previous
lemma shows that it must be an orthogonal basis.

We next develop an algorithm for transforming a given basis {v1, ...,vk} for a subspace into an
orthogonal basis {w1, ...,wk}. The idea is the following. We set

w1 = v1.

If v2 is orthogonal to w1, then we set w2 = v2. If v2 is not orthogonal to w1, then we set

w=v2 � projw1
v2 = v2 �

v2 ·w1

kw1k 2
w1.

Then so far by construction, w1 and w2 are orthogonal and Span(w1,w2) ⇢ Span(v1,v2). Since w2 6= 0,
{w1,w2} must be linearly independent and therefore give a basis for Span(v1,v2). We continue,
replacing v3 by its part orthogonal to the plane spanned by w1 and w2:

w3 = v3 � projSpan(w1,w2)v3 = v3 � projw1
v3 � projw2

v3 = v3 �
v3 ·w1

kw1k 2
w1 �

v3 ·w2

kw2k 2
w2.

The same discussion can be continued as well. Thus we end up with the following theorem formalizing
this process of finding orthogonal basis given an arbitary basis.
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Gram-Schmidt process.

Theorem 1.0.10. Given a basis {v1, ...,vk} for an inner product space V , we obtain an orthogonal basis
{w1, ...,wk} for V as follows:

w1 = v1

w2 = v2 �
v2 ·w1

kw1k 2
w1

...

and, assuming w1, ...,wj have been defined,

wj+1 = vj+1 �
vj+1 ·w1

kw1k 2
w1 �

vj+1 ·w2

kw2k 2
w2 � ...� vj+1 ·wj

kwjk 2
wj

...

wk = vk � vk ·w1

kw1k 2
w1 �

vk ·w2

kw2k 2
w2 � ...� vk ·wk�1

kwk�1k 2
wk�1.

If we so desire, we can arrange for an orthonormal basis by dividing each of w1, ...,wk by its
respective length:

q1 =
w1

kw1k
, q2 =

w2

kw2k
, ... qk =

wk

kwkk
.

Example 1.0.11. Let v1 = (1, 1, 1, 1)>,v2 = (3, 1,�1, 1)> and v3 = (1, 1, 3, 3). Use Gram-Schmit process to
give an orthogonal basis for V = Span(v1,v2,v3) ⇢ R4. We can take

w1 = v1 = (1, 1, 1, 1);

w2 = v2 �
v2 ·w1

kw1k 2
w1 = (2, 0,�2, 0)

w3 = v3 �
v3 ·w1

kw1k 2
w1 �

v3 ·w2

kw2k 2
w2 = (0,�1, 0, 1)

We can furthermore make them a orthonormal basis by normalization with respect to norms.

HOMEWORK
1. Let T : R3 ! R3 be the linear transformation given by reflecting across the plane x1 � 2x2 + 2x3 = 0. Use

the change-of-basis formula to find its standard matrix.

2. Let V ⇢ R3 be the subspace defined by

V = {(x1, x2, x3)
> : x1 � x2 + x3 = 0}.

Find the standard matrix for each of the following linear transformations:

(a) projection on V

(b) reflection across V

(c) rotation of V through angle ⇡/6

3. Let

a =

2

4
sin� cos ✓
sin� sin ✓
cos�

3

5 0  �  ⇡

2
.

Prove that the intersection of the circular cylinder x2
1 +x2

2 = 1 with the plane a ·x = 0 is an ellipse. (Hint:
consider the new basis v1 = (� sin ✓, cos ✓, 0)>,v2 = (� cos� cos ✓, sin�)>,v3 = a.)

4. Describe the projection of the cylindrical region x2
1 + x2

2 = 1, �h  x3  h onto the general plane a · x = 0.

5. Let V = Span
�
(2, 1, 0,�2)>, (3, 3, 1, 0)>

�
⇢ R4.

(a) Find an orthogonal basis for V .
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(b) Use your answer to part 1 to find the projection of b = (0, 4,�4,�7)> onto V .

(c) Use your answer to part 1 to find the projection matrix PV .

6. (Direct sums) Let W1, ...,Wk be subspaces of a vector space V , such that

V = W1 + ...+Wk.

Assume that

W1 \W2 = {0}
(W1 +W2) \W3 = {0}

...
(W1 +W2 + ...+Wk�1) \Wk = {0}.

Prove that V is the direct sum of the subspaces W1, ...,Wk.
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