Lecture 5: Linear Transformations and
Change of Basis

Definition 1.0.1. Let V be a finite-dimensional vector space and letT : V — V be a linear transformation.
Let B = {vy,...,v,} be an ordered basis for V. Define numbers a;;, i =1,...,n,j=1,...,n, by

T(vj) = ai;v1 + agjVa + ... + anjVip.

Then we define A = [a;;] to be the matrix for T' with respect to B, also denote [T']|3. As before we have

where the column vectors are the coordinates of the vectors with respect to the basis 5.

Given a finite-dimensional vector space V and an ordered basis B{vy,...,v,} for V, we can define a
linear transformation
Cg:V — Rn,

which assigns to each vector v its vector of coordinates with respect to the basis 5. That is

(&]

Cplcivi +cava+ ... +cpvy) =

When B is the standard basis £ for R”, this is

T
Ce(x) =

T

With this notation, we can write [Tz in terms of the mapping C;.

| | |
[T]s = CB(T|(V1)) CB(T‘(V2)) CB(T‘(Vn))

Throughout this notes, we will use £ = {ey, ..., e, } for standard basis.

Suppose that we have a linear transformation 7' : V. — V and two ordered bases B = {vi,...,v,,} and
B = {v},..,v,} for V. Let Aqqa = [T]p be the matrix for T with respect to the “old " basis 5, and let
Anew = [T]p be the matrix for T with respect to the “new" basis B’. The fundamental question is to
compute Apew if we know Agq. Define the change of basis matrix P to be the matrix whose column
vectors are the coordinates of the new basis vectors with respect to the old basis

V;‘ = P1jV1 +P2jVe + ... + PnjVn.

When B is the standard basis, we have

Theorem 1.0.2 (Change of basis formula, standard basis). LetT : R® — R"™ be a linear transformation
with standard matrix [T']¢. Let B = {v1, ..., v, } be basis for R" and let [T|z be the matrix for T with respect
to B. Let P be the n x n matrix whose columns are given by the vectors vy, ..., v,,. Then we have

[T]eP = P[T]s.



Proof. The jth column of P is he vector v;, i.e., its coordinate vector Cg¢(v;) with respect to the standard
basis. Therefore, the jth column vector of the matrix product [T]¢s P is the standard coordinate vector of
T(v;). On the other hand, the jth column of [T]z is the coordinate vector, Cz(T(v;)), of T'(v;) with
respect to the basis B. If the jth column of [T is (ay,...,a,) ", then T(v;) = a1v1 + asva + ... + a,v,. But
we also know that

ai

az

Pl .| =a1vi+ave+ ...+ a,vy,.

a”IL

That is, the jth column of P[T]3 is exactly the linear combination of the columns of P needed to give
the standard coordinate vector of T'(v;). O

Theorem 1.0.3 (Change of basis formula, general basis). LetT : V — V be a linear transformation, and
let B = {vy,..,vp} and B’ = {v},...,v],} be ordered bases for V. If [Tz and [T|g are the matrices for T
with respect to the respective bases and P is the change of basis matrix (whose columns are the
coordinates of the new basis vectors with respect to the old basis), then we have

e — P e
Definition 1.0.4. Two matrices A and B are called similar if B = P~' AP for some invertible matrix.

Theorem tells us that any two matrices representing the same linear map 7' : V — V are similar.

Proof. Given a vector v € V, denote by x and x’, respectively, its coordinate vectors with respect to the
bases 5 and B’. We need to prove the relation between x and x’:

x = Px’

Using the equations
VvV = Z T;Vj
i=1

and

so we have
n
_2 : /
Tr; = pij{L'j.
j=1

IfT(v) = w,letyandy’ denote the coordinate vectors of w with respect to bases B and B’. Now
compare the equations

y = [Tpx andy = [T]sx,

using
y =y andx = Px’

On one hand, we have
y = Py’ = P([T|gx') = (P[T]sX'),

and on the other hand,
y = [T]sx = [T]|s(Px') = ([T|sP)x/,

from which we have that



Example 1.0.5. Given the matrix
SR
A [2 2]

of a linear transformation T on R? with respect to the standard basis. Calculate the matrix [Tz with
respect to the new basis B’ = {v1,vs}, where

The change of basis matrix is

Then

ORTHOGONALITY

Definition 1.0.6. Let vy,..., v, € R". We say {v1, ..., v;} is an orthogonal set of vetors provided v, - v; =0
whenever i # j. We say {vi, ..., vi} is an orthogonal basis for a subspace V if {vy,...,v;} is both a basis
for V. and an orthogonal set. Moreover, we say {vi, ..., vi} is an orthonormal basis for V ifit is an
orthogonal basis consisting of unit vectors.

The first reason that orthogonal sets of vectors are important is the following:

Proposition 1.0.7. Letvy,..,viy € R™. If{vy,..,vi} is an orthogonal set of nonzero vectors, then
{v1,..., vi} is linearly indepdent.

Proof. Suppose
c1Vi + ... + cx v = 0.

We need to show that ¢; = c; = ... = ¢, = 0. For any i = 1, ..., k, we take the dot product of this equation
with v;, obtain
CTVA Vo o CRI V) 0

Since v; is assumed to be orthogonal to all the other vecv;’s, i.e.,
V1 -V; = 07

then we have
C; HVZ” 2 = O

Since v; # 0, it follows that ¢; = 0. Repeat this argument for all 1, ..., k, we have ¢; = ...c; = 0. @]

Lemma 1.0.8. Suppose {v,...,vi} is a basis for V. Then the equation

k k
X= Zprojvix = Z WW
i=1 =1 ¥
holds for allx € V if and only if {vi, ..., vi} is an orthogonal basis for V.
Proof. Suppose {v,...,vi} is an orthogonal basis for V. Then there are scalars c, ..., ¢; so that
SX = EiIVil T coo AF C\ 5
We take the dot product of this equation with v;:
X-v;=c1(Vv-vg) + ..+ cu(Ve - Vi) = ¢ ||vi]| %,

and so
X-V;

vl

(&



Conversely, suppose that every vector x is the sum of its projections on vy, ..., vi. Consider v; for
example, since v; is a vector in V, thus by assumption, it naturally satisfies

n= o = 3 T
L= =
)l TAE

On the other hand, vy, ..., v form a basis of V as a default setting, so each vector has a unique
expression in terms of v;’s. So we ahve

vi-v;=0 foralli=2,.. k.
A similar argument shows that v; - v; = 0 for all ¢ # j, and the proof completes. o

We recall that whenever {vy,...,v;} is a basis for V, every vector x € V can be written uniquely as a
linear combination
X =C1V] + CaVa + ... + Cx Vg,

where the coefficients ¢;’s are called the coordinates of x with repsect to the basis {vy,...,vy}. When
{v1,...,vi} forms an orthogonal basis for V, the dot product gives the coordinates of x.

Proposition 1.0.9. Let V C R™ be a k-dimensional subspace. The equation

b - vl
prOJVb Zpro.]v b = Z || H 2

holds for allb € R™ if and only if {v, ..., vi} is an orthogonal basis for V.
Proof. Assume {vy, ..., v;} is an orthogonal basis for V and let v € R™. Write

where
p = projyb.
Then, since p € V, it follows that

k
g IIVzII a?

Moreover, for i =1, ..., k, we have b-v; = p - v;, since b— p € V. Thus

p Vi b-v;
prOJVb P= Zpro‘]vlp ||; Z ||V H; Zprojv

Conversely, suppose
k
projyb = proj,.b
=1
for all b € R™. In particular, when v € V, have that b = proj; b can be written as a linear combination of
vi,..., Vg, SO these vectors span V. Since V is k-dimensional, vy, ..., vy form a basis for V. The previous
lemma shows that it must be an orthogonal basis. O

We next develop an algorithm for transforming a given basis {v, ..., v;} for a subspace into an
orthogonal basis {w1, ..., w;}. The idea is the following. We set

Wi = V.
If v, is orthogonal to w;, then we set wo = vs. If v, is not orthogonal to w;, then we set

Vo - W1

EZ R

Then so far by construction, w; and ws are orthogonal and Span(wi, wy) C Span(vy,vs). Since wy # 0,
{w1,w>} must be linearly independent and therefore give a basis for Span(vy,v3). We continue,

replacing vs by its part orthogonal to the plane spanned by w; and ws:

5 g g VB © Wil 3 )
W3 = V3 — proJSpaIl(Wl,Wz)v3 = V3 — prOle Vi3 e prOJw2V3 = V3 — WWl e WWQ

W_V3 — PIOjy, V2 = Vg —

The same discussion can be continued as well. Thus we end up with the following theorem formalizing
this process of finding orthogonal basis given an arbitary basis.



Gram-Schmidt process.

Theorem 1.0.10. Given a basis {vi,..., v} for an inner product space V, we obtain an orthogonal basis
{w1,...,wy} for V as follows:

Wi =V
Vo - W1
Wo Vi) Ses 72W1
[[wl]
and, assuming wi, ..., w; have been defined,
S Vi+1 Wi Vil W2 gl Ny
¥ T MO o R SR e 5 [l
e Vi - Wi _Vk'W2W2_ _Vk'Wk—lwk f
[[wal [[wa 2 [We—1]?

If we so desire, we can arrange for an orthonormal basis by dividing each of wy, ..., w; by its

respective length:
w1 W2 Wik

qa; qQe = qy

Al lwall > 7 Jlwell”

Example 1.0.11. Letv; = (1,1,1,1)7,vo = (3,1,-1,1)" and vs = (1,1, 3,3). Use Gram-Schmit process to
give an orthogonal basis for V = Span(vy, vy, v3) C R*. We can take

wi=vi =(1,1,1,1);

Vo - W1
Wo = Vg — Wi = 2,0,—2,0
||W1H2 (7 ) ) )
V3 - W1 V3 - Wo
W3 = V3 — Wi — wo = (0,—1,0,1)
[[w | [[wal| 2 B

We can furthermore make them a orthonormal basis by normalization with respect to norms.

HOMEWORK

1. Let T : R? — R? be the linear transformation given by reflecting across the plane z; — 2z + 223 = 0. Use
the change-of-basis formula to find its standard matrix.

2. Let V C R? be the subspace defined by
WV = {(xl,xg,a:g)T i 21 — T3 + x3 = 0}.
Find the standard matrix for each of the following linear transformations:
(a) projection on V

(b) reflection across V'
(c) rotation of V' through angle /6

3. Let
sin ¢ cos 6
a= |sin¢gsinf 0<¢<
cos @

Prove that the intersection of the circular cylinder z? + 23 = 1 with the plane a-x = 0 is an ellipse. (Hint:
consider the new basis v; = (—sinf,cos6,0)", vy = (—cos¢cosf,sing) ", v3z = a.)

4. Describe the projection of the cylindrical region z? + 3 = 1, —h < z3 < h onto the general plane a - x = 0.
DENEIRIA = Spauil((2,1,0,-2)", (3,3,1,0)7) c R4

(a) Find an orthogonal basis for V.



(b) Use your answer to part 1 to find the projection of b = (0,4, —4,—~7)" onto V.

(c) Use your answer to part 1 to find the projection matrix Py .

6. (Direct sums) Let W1, ..., W}, be subspaces of a vector space V, such that
Assume that

Wi W, = {0}
(W1 + WQ) NW3 = {0}

(W1 +Ws+ ...+ Wk—l) M, = {0}

Prove that V is the direct sum of the subspaces Wi, ..., W.



