
Lecture 4: Vector Spaces

HISTORIC NOTES
The ideas of linear combinations arose early in the study of differential equations. The history of the
latter is itself a fascinating topic, with a great deal of activity beginning in the seventeenth century and
continuing to the present day. The idea that a linear combination of solutions of a linear ordinary
differential equation is itself a solution can be found in a 1739 letter from Leonhard Euler (1707-1783)
to Johann Bernoulli (1667-1748). This means that the collection of all solutions forms a vector space.
The notions of linear independence and basis also emerge in that letter, as Euler discusses writing the
general solution of the differential equation as a linear combination of certain base solutions. These
ideas continued to show up in works of other great mathematicians who studied differential equations,
notably Jean le Rond d’Alembert (1717-1783) and Joseph-Louis Lagrange (1736-1813). The ideas of
vector space and dimension has now been mostly credited to Hermann Gunther Grassman
(1809-1877) for his study of geometry. In 1844 he published a seminal work describing his “calculus of
extension," now called exterior algebra. His work inspired Giuseppe Peano (1858-1932) to make the
modern definitions of basis and dimensions. The definition of an abstract vector space has originated
in the 1888 publication Geometrical Calculus.

In 1877 Georg Cantor (1845-1918) made an amazing and troubling discovery: He proved that there
is a one-to-one correspondence between points of R and points of R2. Although intuitively the plane is
bigger than the line, Cantor’s arguments says that they each have the same “number" of points. The
actual definition of dimension that finally came about to resolve these issues leads us to a branch of
mathematics known as topology. Cantor and Peano lay the groundwork for what is now the study of
fractals or fractal geometry.

FOUR FUNDAMENTAL SUBSPACES
Definition 1.0.1 (Nullspace). Let A be an m⇥ n matrix. The nullspace of A is the set of solutions of the
homogeneous system Ax = 0:

N(A) = {x 2 Rn : Ax = 0}.

Definition 1.0.2 (Column space). Let A be an m⇥ n matrix with column vectors a1, ...,an 2 Rm. We define
the column space of A to be the subspace of Rm spanned by the column vectors:

C(A) = Span(a1, ...,an) ⇢ Rm.

Proposition 1.0.3. Let A be an m ⇥ n matrix. Let b 2 Rm. Then b 2 C(A) if and only if b = Ax for some
x 2 Rn. That is,

C(A) = {b 2 Rm : Ax = b is consistent}.

Proof. By definition, C(A) = Span(a1, ...,an), and so b 2 C(A) if and only if b is a linear combination of
the vectors a1, ...,an, i.e., b = x1a1 + ...+ xnan for some scalars x1, ..., xn. We conclude that b 2 C(A) if and
only if b = Ax for some x 2 Rn. Finally, the system Ax = b is consistent provided it has a solution.

Definition 1.0.4 (Row space). Let A be an m⇥ n matrix with row vectors A1, ...,Am 2 Rn. We define the
row space of A to be the subspace of Rn spanned by the row vectors A1, ...,Am:

R(A) = Span(A1, ...,Am) ⇢ Rn.

Noting that R(A) = C(A>), it is natural to complete the rest as follows:

Definition 1.0.5 (Left nullspace). We define the left nullspace of the m⇥ n matrix A to be

N(A>) = {x 2 Rm : A>x = 0} = {x 2 Rm : x>A = 0>}.

Proposition 1.0.6. Let A be an m⇥ n matrix. Then N(A) = R(A)?

Proof. If x 2 N(A), then x is orthogonal to each row vector A1, ..., Am of A. Then x is orthogonal to every
vector in R(A) and is therefore an element of R(A)?. Thus N(A) is a subset of R(A)?, and so we need
to show that R(A)? is a subset of N(A). If x 2 R(A)?, this means that x is orthogonal to every vector in
R(A), so x is orthogonal to each of the row vector A1, ..., Am. But this means that Ax = 0, so x 2 N(A).
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Since C(A) = R(A>), when we substitute A> for A, we have

Proposition 1.0.7. Let A be an m⇥ n matrix. Then N(A>) = C(A)?.

Proposition 1.0.8. Let A be an m⇥ n matrix. Then C(A) = N(A>)?.

Proof. Since C(A) and N(A>) are orthogonal subspaces, we have that C(A) ⇢ N(A>)?. On the other
hand, there is a system of constraint equations

c1 · b = ... = ck · b = 0

that give necessary and sufficient conditions for b 2 Rm to belong to C(A). Setting
V = Span(c1, ..., ck) ⇢ Rm, this means that C(A) = V ?. Since each such vector cj is an element of
C(A)? = N(A>), we conclude that V ⇢ N(A>). It follows that N(A>)? ⇢ V ? = C(A). Combining the two
inclusions, we have C(A) = N(A>)?.

The following theorem summarizes geometric relations of the pairs of the four fundamental spaces.

Theorem 1.0.9. Let A be an m⇥ n matrix. Then
1. R(A)? = N(A)
2. N(A)? = R(A)
3. C(A)? = N(A>)
4. N(A>)? = C(A)

LINEAR INDEPENDENCE AND BASIS
Given vectors v1, ...,vk 2 Rn, it is natural to ask whether v 2 Span(v1, ...,vk). That is, do there exist
scalars c1, .., ck so that v = c1v1 + ... + ckvk? This is in turn a question of whether a certain
inhomogeneous system of linear equations has a solution. We are often interested in the question: is
that solution unique?

Proposition 1.0.10. Let v1, ...,vk 2 Rn and let V = Span(v1, ...,vk). An arbitrary vector v 2 Span(v1, ...,vk)
has a unique expression as a linear combination of v1, ...,vk if and only if the zero vector has a unique
expression as a linear combination of v1, ...,vk; i.e.,

c1v1 + c2v2 + ...+ ckvk = 0 ) c1 = ... = ck = 0.

Proof. Suppose for some v 2 V there are two different expressions

v = c1v1 + ...+ ckvk

and
v = d1v1 + ...+ dkvk.

Then subtracting, we obtain
0 = (c1 � d1)v1 + ...+ (ck � dk)vk,

and so the zero vector has a nontrivial representation as a linear combination of v1, ...,vk, since
different expressions means that at least one difference (ci � di) is nonzero.

Conversely, suppose there is a nontrivial linear combination

0 = s1v1 + ...+ skvk.

Then, given any vector v 2 V , we can express v as a linear combination of v1, ...,vk in several ways: for
instance, adding

v = c1v1 + ...+ ckvk

and
0 = s1v1 + ...+ skvk,

we obtain another formula for v, namely,

v = (c1 + s1)v1 + ...+ (ck + sk)vk.

This completes the proof.

CONTENTS
2



This discussion leads us to make the following concept

Definition 1.0.11. The set of vectors {v1, ...,vk} is called linear independent if

c1v1 + c2v2 + ...+ ckvk = 0 ) c1 = ... = ck = 0,

i.e., if the only way of expressing the zero vector as a linear combination of v1, ...,vk is the trivial linear
combination 0v1 + ...+ 0vk.

Importantly, so if you are to prove a set of vectors {v1, ...,vk} is linear independent, you should write

Suppose c1v1 + c2v2 + ...+ ckvk = 0. I must show that c1 = ... = ck = 0.

Example 1.0.12. We wish to decide whether the vectors

v1 =

2

664

1
0
1
2

3

775 , v2 =

2

664

2
1
1
1

3

775 , v3 =

2

664

1
1
0
�1

3

775 2 R4

for a linearly independent set.

Example 1.0.13. Suppose u,v,w 2 Rn. Show that if {u,v,w} is linearly independent, the so is {u+ v,v +
w,u+w}.

Proposition 1.0.14. Suppose v1, ..,vk 2 Rn form a linearly independent set, and suppose x 2 Rn. Then
{v1, ...,vk,x} is linearly independent if and only if x /2 Span(v1, ...,vk).

Proof. We can prove the contrapositive: Supposing that v1, ...,vk 2 Rn form a linearly independent set,

{v1, ...,vk,v} is linearly dependent iff v 2 Span(v1, ...,vk).

Suppose that v 2 Span(v1, ...,vk). Then v = c1v1 + ...+ ckvk for scalars c1, ..., ck, so

c1v1 + c2v2 + ...+ ckvk + (�1)v = 0,

which implies that {v1, ...,vk,v} is linearly dependent.
Now suppose {v1, ...,vk,v} is linearly dependent. This means that there are scalars c1, ..., ck, c, not all

0, such that
c1v1 + c2v2 + ...+ cv = 0.

Apparently, c cannot equal to 0, otherwise linearly independence of v1, ...,vk would end up with an
contraction. So dividing by c, we have

v = �1

c
(c1v1 + c2v2 + ...+ ckvk

which tell us that v 2 Span(v1, ...,vk).

Definition 1.0.15. Let V ⇢ Rn be a subspace. The set of vectors {v1, ...,vk} is called a basis for V if
i. v1, ...,vk span V ; i.e., V = Span(v1, ...,vk), and
ii. {v1, ...,vk} is linearly independent.

Example 1.0.16. Let e1 = (1, ..., 0)>, e2 = (0, 1, 0, ..., 0)>, ..., en = (0, ..., 0, 1)> 2 Rn. Then {e1, ..., en} is a
basis for Rn, called the standard basis. To check this, we must establish that properties (i) and (ii) hold
for V = Rn.

Example 1.0.17. Consider the plane given by V = {x 2 R3 : x1 � x2 + 2x3 = 0} ⇢ R3, and two vectors

v1 =

2

4
1
1
0

3

5 and v2 =

2

4
�2
0
1

3

5 .
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Let c1, c2 be two real numbers,

c1v1 + c2v2 = c1

2

4
1
1
0

3

5+ c2

2

4
�2
0
1

3

5 = 0

which gives 2

4
c1 � 2c2

c1
c2

3

5 =

2

4
0
0
0

3

5

So {v1,v2} forms a basis of V .

Corollary 1.0.18. Let V ⇢ Rn be a subspace, and let v1, ...vk 2 V . Then {v1, ...,vk} is a basis for V if and
only if every vector of V can be written uniquely as a linear combination of v1, ...,vk.

Definition 1.0.19. When we write v = c1v1 + ...+ ckvk, we refer to c1, ..., ck as the coordinates of v with
respect to the ordered basis {v1, ...,vk}.

Example 1.0.20. Consider the three vectors

v1 =

2

4
1
2
1

3

5 , v2 =

2

4
1
1
2

3

5 , v3 =

2

4
1
0
2

3

5 .

Take a general vector b 2 R3, find a linear combination of v1,v2,v3. Forming the augmented matrix
and row reducing, we have

2

4
1 1 1
2 1 0
1 2 2

������

b1
b2
b3

3

5 !

2

4
1 0 0
0 1 0
0 0 1

������

2b1 � b3
�4b1 + b2 + 2b3
3b1 � b2 � b3

3

5

Thus an arbitrary vector b 2 R3 can be written in the form

b = c1v1 + c2v2 + c3v3

where

c1 = 2b1 � b3

c2 = �4b1 + b2 + 2b3

c3 = 3b1 � b2 � b3.

This process also gives a standard way of finding coordinates of b with respect to the basis {v1,v2,v3}.
The following is an important fact.

Proposition 1.0.21. Let A be an n⇥ n matrix. Then A is nonsingular if and only if its column vectors form
a basis for Rn.

Proof. Denote the column vectors of A by a1,a2, ...,an. Using corollary above, we are to prove that A is
nonsingular if and only if every vector in Rn can be written uniquely as a linear combination of a1, ...,an.

The following theorem tells us that every subspace has a basis.

Theorem 1.0.22. Any subspace V ⇢ Rn other than the trivial subspace has a basis.

Proof. Since V 6= {0}, we can choose a nonzero vector v1 2 V . If v1 spans V , then we know {v1} is a
basis for V . If not, choose v2 /2 Span(v1). Previous proposition asserts that {v1,v2} is linearly
independent. If v1,v2 span V , then {v1,v2} will be a basis for V . If not, choose v3 /2 Span(v1,v2). We
know that {v1,v2,v3} is linearly independent and hence will form a basis for V if the three vectors span
V . We continue in this fashion, and we are guaranteed that the process will terminate in at most n
steps because once we have n+ 1 vectors in Rn, they must be linearly dependent.
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DIMENSIONS
Proposition 1.0.23. Let V ⇢ Rn be a subspace, let {v1, ...,vk} be a basis for V , and let w1, ...,w` 2 V . If
` > k, then {w1, ...,w`} must be linearly dependent.

Proof. Each vector in V can be written uniquely as a linear combination of v1, ...,vk. So let’s write each
vector w1, ...,w` as such:

w1 = a11v1 + a21v2 + ...+ ak1vk

w2 = a12v1 + a22v2 + ...+ ak2vk

...
w` = a1`v1 + a2`v2 + ...+ ak`vk.

We can write

2

4
| | |

w1 . . . wj . . . w`

| | |

3

5 =

2

4
| | |
v1 v2 . . . vk

| | |

3

5

2

6664

a11 a1j a1`
a21 a2j a2`
... . . .

... . . .
...

ak` ak` ak`

3

7775

where the jth column of the k⇥ ` matrix A = [aij ] consists of the coordinates of the vector wj with respect
to the basis {v1, ...,vk}. We can write the above equation as

2

4
| | |

w1 w2 · · · w`

| | |

3

5 =

2

4
| | |
v1 v2 · · · vk

| | |

3

5A.

Since ` > k, there cannot be a pivot in every column of A, and so there is a nonzero vector c
satisfying

A

2

6664

c1
c2
...
c`

3

7775
= 0.

Then we have
2

4
| | |

w1 w2 · · · w`

| | |

3

5

2

6664

c1
c2
...
c`

3

7775
=

2

4
| | |
v1 v2 · · · vk

| | |

3

5

0

BBB@
A

2

6664

c1
c2
...
c`

3

7775

1

CCCA
= 0.

That is, we have found a nontrivial linear combination of wj ’s to be 0, which means {wj} is linearly
dependent.

Theorem 1.0.24. Let V ⇢ Rn be a subspace, and let {v1, ...,vk} and {w1, ...,w`} be two basis for V . Then
we have k = `.

Proof. Since {v1, ...,vk} forms a basis for V and {w1, ...,w`} is known to be linearly independent, we use
previous proposition to conclude that ` < k. The same arguments applies to the other direction, so we
have that k  `. Thus, k = `.

Definition 1.0.25. The dimension of a subspace V ⇢ Rn is the number of vectors in any basis for V . We
denote the dimension of V by dimV . By convention, dim0 = 0.

Proposition 1.0.26. Suppose V and W are subspaces of Rn with the property that W ⇢ V . If dimV =
dimW , then V = W .

Proof. Let dimW = k and let {v1, ...,vk} be a basis for W . If W ( V , then there must be a vector v 2 V
with v /2 W . Then {v1, ...,vk,v} is linearly independent, so dimV � k + 1. This is a contradiction.
Therefore, V = W .
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DIMENSIONS OF THE FOUR SUBSPACES
In this section, we will specify a procedure for giving a basis for each of R(A),N(A),C(A),N(A>). Their
dimensions will follow immediately.

Theorem 1.0.27. Let A be an m ⇥ n matrix. Let U and R, respectively, denote the echelon and reduced
echelon form, respectively, of A, and write EA = U .

1. The (transposes of the) nonzero rows of U (or of R) give a basis for R(A).

2. The vectors obtained by setting each free variable equal to 1 and the remaining free variables equal to
0 in the general solution of Ax = 0 give a basis for N(A).

3. The pivot columns of A give a basis for C(A).

4. The rows of E that correspond to the zero rows of U give a basis for N(A>).

The following results on dimension can be deduced.

Theorem 1.0.28. Let A be an m⇥ n matrix of rank r. Then

1. dimR(A) = dimC(A) = r.

2. dimR(A) = n� r.

3. dimN(A>) = m� r.

Proof. There are r pivots and a pivot in each nonzero row of U , so dimR(A) = r. Similarly we have a
basis vector for C(A) for each pivot, so dimC(A) = r. dimN(A) is equal to the number of free variables,
and this is the difference between the total number of variables, n, and the number of pivot variables,
r. Lastly, the number of zero rows in U is the difference between the total number of rows, m, and the
number of nonzero rows, r, so dimN(A>) = m� r.

Corollary 1.0.29 (Nullity-Rank Theorem). Let A be an m⇥ n matrix. Then

null(A) + rank(A) = n.

The following proposition is on the dimension of orthogonal complements.

Proposition 1.0.30. Let V ⇢ Rn be a k-dimensional subspace. Then dimV ? = n� k.

Proof. Choose a basis {v1, ...,vk} for V , and let these be the rows of a k ⇥ n matrix A. By construction,
we have R(A) = V . Notice that rank(A) = dimR(A) = dimV = k. we have that V ? = N(A), so dimN(A) =
n� k.

As a consequence, we can prove the following

Theorem 1.0.31. Let V ⇢ Rn be a subspace. Then every vector in Rn can be written uniquely as the sum
of a vector in V and a vector in V ?. In particular, we have Rn = V + V ?.

Proof. Let {v1, ...,vk} be a basis for V ?. Then we claim that the set {v1, ...,vn} is linearly independent.
For suppose that

c1v1 + c2v2 + ...+ cnvn = 0.

Then we have
c1v1 + c2v2 + ...+ ckvk = �(ck+1vk+1 + ...+ cnvn)

Because only the zero vector can be in both V and V ?, we have

c1v1 + ...+ ckvk = 0 and ck+1vk+1 + ...+ cnvn = 0.

Since each of the sets {v1, ...,vk} and {vk+1, ...,vn} is linearly independent, we conclude that c1 = ... =
ck = ...0, as required. It follows that {v1, ...,vn} gives a basis for an n-dimensional subspace of Rn. Thus,
every vector x 2 Rn can be written uniquely in the form

x = (c1v1 + ...+ ckvk) + (ck+1vk+1 + ...+ cnvn) = element of V + element of V ?
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HOMEWORK
1. Suppose {u,v,w} ⇢ R3 is linearly independent.

(a) Prove that u · (v ⇥w) 6= 0

(b) Prove that (u⇥ v,v ⇥w,w ⇥ u) is linearly independent.

2. Suppose v1, ...,vk are nonzero vectors with the property that vi · vj = 0 whenever i 6= j. Prove that
{v1, ...,vk} is linear independent.

3. Let A be an m ⇥ n matrix and suppose v1, ...,vk 2 Rn. Prove that if {Av1, ..., Avk} is linearly
indepdendent, then {v1, ...,vk} must be linearly independent.

4. Let A be an n⇥ n matrix and suppose v1,v2,v3 2 Rn are nonzero vectors that satisfy

Av1 = v1

Av2 = 3v2

Av3 = 3v3

Prove that {v1,v2,v3} is linearly independent. (Hint: start by showing that {v1,v2} must be linearly
independent.)

5. Find a basis for each of the given subspaces and determine its dimension.

(a) V = Span
�
(1, 2, 3)>, (3, 4, 7)>, (5,�2, 3)>

�
⇢ R3

(b) V = {x 2 R5 : x1 = x2, x3 = x4} ⇢ R5.

6. Give a basis for the orthogonal complement of each of the following subspaces of R4.

(a) V = Span
�
(1, 0, 3, 4)>, (0, 1, 2,�5)>

�

(b) W = {x 2 R4 : x1 + 3x3 + 4x4 = 0, x2 + 2x3 � 5x4 = 0}
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