
Lecture 3: Theory of Linear Systems
We have seen in high school that we can view the unit circle {x 2 R2 : kxk = 1} either as the set of
solutions of an equation or in terms of a parametric representation

{


cos t
sin t

�
: t 2 [0, 2⇡)}.

These are the implicit and explicit representations of this subset of R2. Similarly, any subspace V ⇢ Rn

can be represented in two ways:
i. V = Span{v1, ...,vk} for appropriate vectors v1, ...,vk 2 Rn, this is the explicit or parametric

representation;
ii. V = {x 2 Rn : Ax = 0} for an appropriate m⇥ n matrix A, this is the implicit representation, viewing V

as the intersection of the hyperplanes defined by Aix = 0.
As we have seen the two expression of the unit circle, the implicit and explicit descriptions extends to
even nonlinear settings.

GAUSSIAN ELIMINATION
In this section we give an explicit algorithm for solving a system of m linear equations in n vairables:

a11x1 + a12x2 + ...+ a1nxn = b1

a21x1 + a22x2 + ...+ a2nxn = b2
...

am1x1 + am2x2 + ...+ amnxn = bm.

With all the notations and concepts of matrix multiplication, we can write this in the form Ax = b.
Some linear systems are easy to solve, but general complicated systems of equations require some

algebraic manipulations before we can easily read off the general solution in parametric form. There
are three basic operations we can perform on systems of equations that will not affect the solution set.
They are called the elementary operations.
i. interchange any pair of equations;
ii. multiply any equation by a nonzero real number;
iii. replace any equation by its sum with a multiple of any other equation.

Example 1.0.1. Consider the system of linear equations

3x1 � 2x2 + 2x3 + 9x4 = 4

2x1 + 2x2 � 2x3 � 4x4 = 6.

After operation (i), we have

2x1 + 2x3 � 2x3 � 4x4 = 6

3x1 � 2x2 + 2x3 + 9x4 = 4

Use operation (ii), multiplying the first equation by 1
2 , we have

x1 + x2 � x3 � 2x4 = 3

3x1 � 2x2 + 2x3 + 9x4 = 4

Use operation (iii), adding -3 times the first equation to the second, we have

x1 + x2 � x3 � 2x4 = 3

�5x2 + 5x3 + 15x4 = �5

Use operation (ii), multiplying the second equation by � 1
5 , we have

x1 + x2 � x3 � 2x4 = 3

x2 � x3 � 3x4 = 1
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Finally, we use operation (iii), adding -1 times the second equaiton to the first, we have

x1 + x4 = 2

x2 � x3 � 3x4 = 1.

It is easy to see that x1 and x2 are determined by x3 and x4. Thus the general solution of the system can
be written as

x1 = 2� x4

x2 = 1 + x3 + 3x4

x3 = x3

x4 = x4

which is equivalent to the vector form

x =

0

BB@

2
1
0
0

1

CCA+ x3

0

BB@

0
1
1
0

1

CCA+ x4

0

BB@

�1
3
0
1

1

CCA

which is a parametric representation of a plane in R4.

Before using elementary operations to solve a general system, we should make sure that performing
elementary operations on a system of equations does not change its solutions.

Proposition 1.0.2. If a system of equations Ax = b is changed into the new system Cx = d by elementary
operations, then the systems have the same set of solutions.

Proof. We need to show two results: 1. every solution of Ax = b is also a solution of Cx = d, and 2. vice
versa.

1. Start with a solution u of Ax = b. Denoting the rows of A by A1, ...,Am, we have

A1 · u = b1
...

Am · u = bm

If we apply an elementary operation of type (i), u still satisfies precisely the same list of equations. If
we apply an elementary operation of type (ii), i.e., multiplying the kth equation by r 6= 0. Note that if u
satisfies Ak · u = bk, then it must satisfy

(rAk) · u = rbk.

As for an elementary operation of type (iii), suppose we add r times the kth equation to the lth; since
Ak · u = bk and Al · u = bl, it follows that

(rAk +Al) · u = (rAk · u) + (Al · u) = rbk + bl,

and so u satisfies the new lth equation.
2. To prove conversely that if u satisfies Cx = d, the it satisfies Ax = b, note that the inverse of

elementary operation is an elementary operation.

We next introduce the augmented matrix for linear systems.

[A|b] =

2

64
a11 . . . a1n
...

...
am1 . . . amn

�������

b1
...
bm

3

75

The elementary operations on a system become operations on the rows of the augmented matrix.
Furthermore, we know that elementary operations do not change the solution set of a linear system, so
we can freely perform elementary row operations on the augmented matrix of a system with the goal of
finding an equivalent augmented matrix from which we can easily read off the general solution.
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Definition 1.0.3. We call the first nonzero entry of a row its leading entry. A matrix is in echelon form if
1. The leading entries move to the right in successive rows.
2. The entries of the column below each leading entry are all 0.
3. All rows of 0’s are at the bottom of the matrix.
A matrix is in reduced echelon form if it is in echelon form and, in addition,

4. Every leading entry is 1.
5. All the entries of the column above each leading entry are 0 as well.
If a matrix is in echelon form, we call the leading entry of any nonzero row a pivot. We refer to the column
in which a pivot appears as pivot columns and to the correpsonding variables as pivot variables. The
remaining variables are called free variables.

The word echelon origins from French, meaning "ladder". The standard steps of solving a linear
system, or express its solution in terms of free variables consist of
• Reduce the augmented matrix of the linear system to echelon form
• Write the vector of unkowns x = (x1, ..., xn) in terms of free variables according to the reduced echelon

form of augmented matrix.
• Express the vector of unknows or the general solution in standard form, i.e., the sum of a particular

solution and a linear combination of vectors
• The particular solution is obtained by setting all the free variables equal to 0, and the vectors in the

linear combination is obtained by letting the free variables 1 and 0 accordingly.
The above steps can be reviewed in the following example.

Example 1.0.4. Suppose the augmented matrix of some linear system is
2

4
1 2 0 0 4
0 0 1 0 �2
0 0 0 1 1

������

1
2
1

3

5

Note that this is already in reduced form. The general solution in terms of free variable is

x =

2

66664

x1

x2

x3

x4

x5

3

77775
=

2

66664

1
0
2
1
0

3

77775
+ x2

2

66664

�2
1
0
0
0

3

77775
+ x5

2

66664

�4
0
2
�1
1

3

77775

THEORY OF LINEAR SYSTEMS: EXISTENCE,
CONSTRAINT EQUATIONS, AND RANK
If A1, ...,Am denote the row vectors of A, then the vectors c is a solution of Ax = b if and only if

A1 · c = b1, ...,Am · c = bm.

Geometrically, c is a solution exactly when it lies in the intersection of all the hyperplanes defined by
the system of equations. On the other hand, we can define the column vectors as follows:

Aj =

2

64
a1j
...

amj

3

75

. Note that the matrix product Ax can also be written as

Ax = x1A
1 + ...+ xnA

n

Thus a solution c of the linear system Ax = b provides scalars c1, ..., cn so that

b = c1A
1 + ...+ cnA

n

This gives us second geometric interpretation: A solution c gives a linear combination of b in terms of
column vectors of A.
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Definition 1.0.5. If the system of equation Ax = b has no solutions, the system is said to be inconsistent;
if it has at least one solution, then it is said to be consistent.

Inconsistency from the echelon form of its augmented matrix: The system is inconsistent precisely
when there is an equation of the form of

0x1 + ...+ 0xn = c

for some nonzero scalar c. On the other hand, let [U |c] denote an echelon form of [A|b]. Then the
system is consistent iff any zero row in U corresponds to a zero entry in the vector c.

There are two geometric way of consistency:
• Ax = b is consistent if and only if when the intersection of hyperplanes

A1x = b1, ...,Amx = bm

is nonempty.
• or b 2 Span(A1, ...,An).

So far we have studied linear combination of a set of vectors, existence of solution of linear systems,
and intersection of hyperplanes. We will see that these three problems all lead to the concept of rank of
a matrix.

Definition 1.0.6. The rank of a matrix A is the number of nonzero rows (the number of pivots) in any
echelon form of A. It is usually denoted by r.

Then the number of rows of 0’s in the echelon form is m � r, and b must satisfy m � r constraint
equations. Note that the rank of a matrix is well-defined, i.e., independent of the choice of echelon
form. Given a system of m linear equations in n variables, let A denote its coefficient matrix and r the
rank of A. The above property can be stated formally as follows.

Proposition 1.0.7. The linear system Ax = b is consistent if and only if the rank of the augmented
matrix [A|b] equals the rank of A. In particular, when the rank of A equals m, the system Ax = b will be
consistent for all vectors b 2 Rm.

Proof. Let [U |c] denote the echelon form of the augmented matrix [A|b]. We know that Ax = b is
consistent if and only if any zero row in U corresponds to a zero entry in the vector c, which occurs if
and only if the number of nonzero rows in the augmented matrix [U |c] equals the number of nonzero
rows in U , i.e., the rank of A. When r = m, there is no row of 0’s in U and hence no possibility of
inconsistency.

UNIQUENESS AND NONUNIQUENESS OF SOLUTIONS
The theory of linear systems concerns how many solutions a given consistent system of equations has.
Our previous study of solving linear systems suggests a connection between Ax = b and Ax = 0.

Definition 1.0.8. A system Ax = b is called inhomogeneous when b 6= 0; the corresponding equation
Ax = 0 is called the associated homogeneous system.

Important! To related the solutions of the inhomogeneous system Ax = b and those of the associated
homogeneous system Ax = 0, we need the following fundamental algebraic observation.

Proposition 1.0.9. Let A be an m⇥ n matrix and let x,y 2 Rn. Then

A(x+ y) = Ax+Ay.

Proof. Ex.

Theorem 1.0.10. Assume the system Ax = b is consistent, and let u1 be a particular solution. Then all
the solution are of the form

u = u1 + v

for some solution v of the associated homogeneous system Ax = 0.
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Proof. Suppose u is an arbitrary solution of Ax = b, then

A(u� u1) = Au�Au1 = b� b = 0,

so v = u� u1 is a solution of the associated homogeneous system. The other direction is trivial.

Proposition 1.0.11. Suppose the system Ax = b is consistent. Then it has a unique solution if and only
if the associated homogeneous system Ax = 0 has only the trivial solution. This happens exactly when
r = n.

Definition 1.0.12. An n⇥ n matrix of rank r = n is called nonsingular. An n⇥ n matrix of rank r < n is
called singular.

Let A be an n⇥ n matrix. The following are equivalent:
1. A is nonsingular.
2. Ax = 0 has only the trivial solution.
3. For every b 2 Rn, the equation Ax = b has a unique solution.

ELEMENTARY MATRICES AND INVERSES
So far we have focused on the interpretation of matrix multiplication in terms of columns, namely, the
fact that the jth column of AB is the product of A with the jth column vector of B. Equally, the
following is true

the jth row of AB is the product of the ith row vector of A with B.

Just as multiplying the matrix A by a column vector x on the right, which gives us the linear
combination x1a1 + ...+ xnan of the columns of A, we can easily check that multiplying A on the left by
the row vector [x1 . . . xm],

⇥
x1 x2 . . . xm

⇤

2

6664

��� A1 ���
��� A2 ���

...
��� Am ���

3

7775

yields the linear combination x1A1 + x2A2 + ...+ xmAm of the rows of A.
We can perform row operations on a matrix A by multiplying on the left by appropriately chosen

matrices. For example, if

A =

2

4
1 2
3 4
5 6

3

5

E1 =

2

4
0 1 0
1 0 0
0 0 1

3

5 , E2 =

2

4
1 0 0
0 1 0
0 0 4

3

5 E3 =

2

4
1 0 0
�2 1 0
0 0 1

3

5

then

E1A =

2

4
3 4
1 2
5 6

3

5 , E2A =

2

4
1 2
3 4
20 24

3

5 E3A =

2

4
1 2
1 0
5 6

3

5

Such matrices that give corresponding elementary row operations are called elementary matrices.
i. To interchange rows i and j, we should multiply by an elementary matrix of the form

i !

j !

2

666666666664

1
. . .
. . . 0 . . . 1 . . .

. . .
. . . 1 . . . 0 . . .

. . .
1

3

777777777775
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• To multiply row i by a scalar c, we should multiply by an elementary matrix of the form

i !

2

66666666664

1
. . .

1
c

1
. . .

1

3

77777777775

iii. To add c times row i to row j, we should multiply by an elementary matrix of the form

i !

j !

2

666666666664

1
. . .

1
. . .

. . . c . . . 1
. . .

1

3

777777777775

Recall that if we want to find the constraint equations that a vector b must satisfy in order for Ax = b
to be consistent, we reduce the augmented matrix [A|b] to echelon form [U |c] and set equal to 0 those
entries of c corresponding to the rows of zeros in U . That is, when A is an m ⇥ n matrix of rank r, the
constraint equations are merely the equations cr+1 = ... = cm = 0. Letting E be the product of the
elementary matrices corresponding to the elementary row operations required to put A in echelon form,
we have U = EA and so

[U |c] = [EA|Eb].

That is, the constraint equation are the equations

Er+1 · b = 0, . . . , Em · b = 0.

Here we can use equation [U |c] = [EA|Eb] to find a simple way to compute E: when we reduce the
augmented matrix [A|b] to echelon form [U |c], E is the matrix so that Eb = c.

Recall that the inverse of the n ⇥ n matrix A is the matrix A�1 satisfying AA�1 = A�1A = In. It is
convenient to have an inverse matrix if we wish to solve the system Ax = b for numerous vectors b. If
A is invertible, we can solve as follows:

Ax = b ) A�1(Ax) = A�1b ) (A�1A)x = A�1b ) x = Inx = A�1b

In this computation, we see that if A is an invertible matrix, then Ax = c has unique solution for every
c 2 Rn, and so A must be nonsingular. We will see that the converse is also true. Suppose A is
nonsingular, then every equation Ax = c has a unique solution. Consider equations

Ax = ej

for j = 1, ..., n, it follows from the nonsingularity of A that each equation has unique solution, say, bj,
i.e.,

Abj = ej

and then we have

AB = A

2

4
| | |
b1 b2 . . . bn

| | |

3

5 =

2

4
| | |
e1 e2 . . . en
| | |

3

5 = In.

This means that the solution matrix B is the right inverse of A, but we still need BA = In to assure that
B is the left and right inverse of A. This can be understood by the process of Gaussian elimination in
solving linear systems Ax = ej.

The Gaussian elimination is used to obtain the reduced echelon form [In|B] from [A|In], through a
product E of elementary matrices, i.e.,

E[A|I] = [I|B],

so EA = I and B = E, and then we have BA = I. Thus B is the inverse of A. This process has proved
the following
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Theorem 1.0.13. An n⇥ n matrix is nonsingular if and only if it is invertible.

Example 1.0.14. Determine the inverse of the matrix

A =

2

4
1 �1 1
2 �1 0
1 �2 2

3

5

HOMEWORK
1. Use elementary operation to find the general solution of the following system of equations.

x1 + x2 = 1

x1 + 2x2 + x3 = 1

x2 + 2x3 = 1

2. For each of the following matrices A, determine its reduced echelon form and give the general
solution of Ax = 0 in standard form.

(a)

A =

2

4
1 0 �1
�2 3 �1
3 �3 0

3

5

(b)

A =


1 �2 1 0
2 �4 3 �1

�

3. By solving a system of equations, find the linear combination of the vectors

v1 =

2

4
1
0
�1

3

5 ,v2 =

2

4
0
1
2

3

5 ,v3 =

2

4
2
1
1

3

5 that tives b =

2

4
3
0
�2

3

5.

4. Decide whether b is a linear combination of

v1 =

2

664

1
0
1
�2

3

775 ,v2 =

2

664

0
�1
0
1

3

775 ,v3 =

2

664

1
�2
1
0

3

775

and

b =

2

664

1
�1
1
�1

3

775

5. Find constraint equation that b must satisfy in order to be en element of

V = Span ((�1, 2, 1), (2,�4,�2))

6. Suppose A is an m ⇥ n matrix with rank m and v1, ...,vk 2 Rn are vectors with Span(v1, ...,vk) = Rn.
Prove Span(Av1, ..., Avk) = Rm.

7. Let A be an m⇥ n matrix with column vectors a1, ...,an 2 Rm.

(a) Suppose a1 + ...+ an = 0. Prove rank(A) < n.

(b) More generally, suppose that there is some linear combination c1a1 + ...+ cnan = 0, where some ci 6= 0.
Prove rank(A) < n.

8. Assume x1, x2, x3 are distinct.
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(a) Show that the matrix 2

4
1 x1 x2

1

1 x2 x2
2

1 x3 x2
3

3

5

is nonsingular.

(b) Show that the system of equations
2

4
x2
1 x1 1

x2
2 x2 1

x2
3 x3 1

3

5

2

4
a
b
c

3

5 =

2

4
y1
y2
y3

3

5

always has a unique solution.

9. Let A =


1 ↵
↵ 3↵

�
.

(a) For which numbers ↵ will A be singular?

(b) For all numbers ↵ not on your list in part a, we can solve Ax = b for every vector b 2 R2. For each
of the numbers ↵ on your list, give the vectors b for which we can solve Ax = b.
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